महाराज्य उत्तरिकारीकी सेका हार-अन व व संमुक्त (पूर्व) परोहरा-२०18 परोहरा पेकरेका -08/07 (२०18

प्रश्नपुस्तिका क्रमांक BOOKLET No.

2018

127413

प्रश्नपुस्तिका

M11

संच क्र.

मराठी, इंग्रजी, सामान्य अध्ययन आणि अभियांत्रिकी अभियोग्यता चाचणी

एकूण प्रश्न : 100

एकूण गुण : 100

वेळ : 1½ (दीड) तास

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा. परीक्षा-क्रमांक भित्राची संकेताक्षरे शेवटचा अंक

- (3) वर छापलेला प्रेशनपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) (अ) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद कराताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
 - (ब) आयोगाने ज्या विषयासाठी मराठी बरोबर इंग्रजी माध्यम विहित केलेले आहे. त्याच विषयाचा प्रत्येक प्रश्न मराठी बरोबर इंग्रजी भाषेत देखील छापण्यात आला आहे. त्यामधील इंग्रजीतील किंवा मराठीतील प्रश्नामध्ये मुद्रणदोषांमुळे अथवा अन्य कारणांमुळे विसंगती निर्माण झाल्याची शंका आल्यास, उमेदवाराने संबंधित प्रश्न पर्यायी भाषेतील प्रश्नाशी ताडून पहावा.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परिक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीढ

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

पुढील उतारावाचून त्यावर आधारित 1 ते 5 प्रश्नांची उत्तरे द्या :

धर्माच्या कोणत्याही क्षेत्रात आपण नजर टाकली तर आपल्याला असेच दिसेल की ज्ञानेश्वर, एकनाथ, तुकाराम यांनी अत्यंत उदार व उदात्त उपदेश केला असूनही त्यातून सामाजिक धर्माची प्रेरणा कोणी घेतलीच नाही. धनाचे दान हे धर्मदृष्टीने केवढे पुण्य आहे ? श्रीमंतांनी गरिबांना दान द्यावे असा उपदेश पावलोपावली संतांनी केला आहे. पण येथल्या श्रीमंतांनी दाने कशी दिली ? त्यांनी मंदिरे बांधली. घाट बांधले. त्यांच्या व्यवस्थेसाठी जिमनी दिल्या. अन्नछत्रे घातली. त्यासाठी उत्पन्न नेमून दिले. पण रुणालयांसाठी, पाटबंधाऱ्यांसाठी, शेतीसुधारणेसाठी, तुरुंगसुधारणेसाठी, अस्पृश्यांच्या उन्नतीसाठी कोणी दाने दिली नाहीत. याचा अर्थ असा होतो की, स्वत:च्या पारलौकिक कल्याणासाठी, पुण्यासाठी ही दाने दिली जात. त्या लोकांना दीनांची दया येत नसे असे नाही; पण त्या दीनांची कायमची उन्नती व्हावी, या क्षणाला कळवळा येऊन आपण त्याला थोडे द्रव्य देण्याने त्याचा प्रश्न सूटत नाही, तो सोडविण्याचा काही प्रयत्न केला पाहिजे अशी भावनाच कोणाच्या चित्तात येथे उदित झाली नाही. ती झाली असती तर येथे आमुलाग्र क्रांती झाली असती. पाश्चात्य समाज उत्कर्ष पावला तो त्या समाजाच्या धर्मबुद्धीला हे वळण मिळाले म्हणून. रॉकफेलर हे नाव आता जगप्रसिद्ध झाले आहे. त्याने केलेले दान या प्रकारचे आहे. नवकोटनारायण हा शब्द त्याच्या वर्णनाला थिटा पडेल. अपार, अगणित संपत्ती एवढेच म्हणता येईल आणि तरीही त्या संपत्तीची कल्पना येणार नाही. या संपत्तीचे काय करावे असा प्रश्न येताच जॉन रॉकफेलर तरुण वयातच सर्व व्यवसायांतून निवृत्त झाला आणि आयुष्याची पृढली 45 वर्षे संपत्ती दान करण्यातच खर्च केली. रुग्णालये, वैद्यकीय संशोधन, शास्त्रीय संशोधन, ग्रंथालये, सार्वजनिक इमारती, शांततेसाठी प्रयत्न करणारी मंडळे, धर्मसंस्था या सर्वांना त्याने कोटीकोटी रुपयांचे दान केले या दानामध्ये मानवजातीचे कल्याण हा एकच हेतु होता. 'अखिल विश्वातला मानव' हे त्याचे लक्ष्य होते.

- 1. संतांच्या उपदेशातून आपण कोणती प्रेरणा घेतली नाही, असे लेखकाचे मत आहे.
 - (1) दान देण्याची
 - (2) सामाजिक धर्माची
 - (3) धर्म वाढवण्याची
 - (4) धन संचयाची

2. येथल्या श्रीमंतांनी कशासाठी दाने दिली ?

- अ. मंदिरे बांधण्यासाठी
- ब. पाट बांधण्यासाठी
- क. घाट बांधण्यासाठी
- ड. शेती सुधारण्यासाठी
- (1) अ आणि ड
- (2) अ आणि ब
- (3) अ आणि क
- (4) अ, ब, क आणि ड सर्व

M11		4	Α
3.	पाश्चात्य समाजाचा विकास कोणत्या का	रणांमुळे होतो असे लेखकाने म्हटले आहे ?	
	(1) अतिशय श्रीमंत असल्यामुळे		
	(2) धनाचा संचय केल्यामुळे		
	(3) मोक्ष प्राप्तीमुळे		
	(4) धर्म बुद्धिला योग्य वळण मिळाल्य	ाने	
4.	जॉन रॉकफेलर यांचा दान करण्याचा हेतू	कोणता ?	
	(1) धर्माचा विकास करणे.		
	(2) श्रीमंताचा विकास करणे.		
	(3) गरीबांचा विकास करणे.		
	(4) संपूर्ण विश्वातील मानवजातीचा वि	कास करणे.	
5.	वरील उताऱ्याला योग्य शीर्षक द्या.		
	(1) 'धर्मशक्तीचा विकास'		
	(2) 'सामाजिक अभ्युदय'		
	(3) 'अस्पृश्यांची प्रगती'		
	(4) यापैकी नाही		
6.	'अं' व 'अ:' या दोन वर्णांना	थ्राचे प्रमातात	
υ.	अ. अनुस्वार	અત્ર મ્ફળાતા.	
	ब. स्वर		
	क. स्वरादी		
	ड. व्यंजने		
	(1) अ आणि ब बरोबर	(2) क आणि ड बरोबर	
	(3) फक्त क बरोबर	(4) फक्त ड बरोबर	
7.	'अवशी खाई तूप आणि सकाळी पाही रू	–	
	(1) अति खाणे नुकसानकारक असते.		
	(2) आरशात तोंड पाहून रूप न्याहाळणे	ो.	
	(3) स्वत:ची चूक लपविण्याचा प्रयत्न		
	(4) अतिशय उतावळेपणाची कृती.		
— कच्च्या	कामासाठी जागा / SPACE FOR ROUG	GH WORK	

	•
	А
4	

- 'हातावर तुरी देणे' या वाक्यप्रचाराचा अर्थ ओळखा.
 - अ. कोणतेही काम न होणे.
 - ब. डोळयांदेखत फसवून निसटून जाणे.
 - क. जबाबदारी झटकून मोकळे होणे.
 - ड. गोड गोड बोलून फसविणे.
 - (1) फक्त अ बरोबर
 - (2) फक्त व बरोबर
 - (3) क आणि ड दोन्ही बरोबर
 - (4) यापैकी नाही
- 9. 'उत्कर्ष' या शब्दाच्या विरुद्धार्थी शब्द ओळखा.
 - अ. अपकर्ष
 - ब. यश
 - क. अबोल
 - ड. निर्णायक
 - (1) फक्त अ बरोबर

- (2) फक्त ब बरोबर
- (3) अ, ब, क आणि ड बरोबर
- (4) सर्व चूक
- 10. 'मी रोज सकाळी पहाटे उठतो व एक तासभर शाळेचा अभ्यास करतो' यातील वाक्यप्रकार कोणता ?

5

- अ. केवळ वाक्य
- ब. संयुक्त वाक्य
- क. प्रधान वाक्य
- ड. गौण वाक्य
- (1) अ आणि ब दोन्ही बरोबर
- (2) फक्त ब बरोबर
- (3) फक्त क आणि ड बरोबर
- (4) सर्व चुक

कच्चा कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

M11					6		A		
11.	Ide	ntify the	correct ser	ntence.			•		
	a. She got up when the alarm clock went off.								
	b.	Erika l	had droppe	ed her bag w	hile she wa	as į	getting into her car.		
	c.	It was	the first ti	me I'd talke	d to Ella ou	ıts	ide the office.		
	d.	She wi	ll be takin	g up her pla	ce at Unive	ers	ity in October.		
	(1)	a and o	2		(2))	b and d		
	(3)	a, c an	d d		(4))	b, c and d		
12.	Mat		ollowing pa	airs of anton	-				
		I		7	H		•		
	a.	Collea	-	I.	Indolence				
	b.	Promp		II.	Honesty				
	c.	Duplic	-	III.	Benevoler)		
	d.	Objecti		IV.	Opponent	;			
		a	b	C	d	-			
	(1)	II	III	\mathbf{IV}	I				
	(2)	III	II	\mathbf{IV}	I				
	(3)	I	IV	111	II				
	(4)	IV	I	11	III				
13.	Choose the appropriate pair to fill in the blanks in both the given sentences.								
	a.	Measle	s is highly	,	_ •				
	b.	Englar	nd is the or	nly country		_ to	Wales.		
	(1)	_	ious, conta		(2)	-	contiguous, contagious		
	(3)	_	ious, conti	•	(4)		contiguous, contiguous		
14.	Complete the sentence with who, which, whom or what.								
	of them broke the window?								
	(1)	\mathbf{Who}			(2)	ı	Whom		
	(3)	What			(4)	I	Which		
15.	Choose the alternative containing the correct sequence of words to fill in the blanks								
	in t	he given	sentences	•					
	a.		was a	big audiend	ce for the co	nc	ert that night.		
	b.		is no						
	c.		is a ca	ar outside.			,		
	(1)	There,	It, It		(2)	۱.	There, There		
	(3)	There,	There, It		(4))	It, It, It		
कच्च्या	कामार	साठी जागा	/ SPACE F	OR ROUGH	WORK	_			

Read the following passage carefully and answer the questions from 16 to 20:

If from a hilltop you could watch a panther stalking his prey, he would offer a most interesting spectacle. You would see him taking advantage of every bush, of every tree trunk and of every stone behind which to take cover. He can flatten himself to the ground in an amazing fashion. His colouration renders him invisible, unless you have the keenest eyesight. I once watched one through a pair of binoculars and was amazed at the really wonderful sense of woodcraft the panther had. Then comes the final rush. In a couple of bounds and with lightning speed, he reaches his prey.

- 16. Give the meaning of the idiom 'to take advantage of'.
 - (1) Profit selfishly by exploiting
 - (2) Put to good use
 - (3) None of these
 - (4) All of these
- 17. What is the word for the phenomena 'his colouration renders him invisible'?
 - (1) Concentration
 - (2) Commouflagne
 - (3) Configuration
 - (4) Camouflage
- 18. What is the panther doing in the story?
 - (1) Hiding

(2) Stalking

(3) Rushing

- (4) Flattening
- 19. With the help of which instrument did the writer watch the panther?
 - (1) Spectacle

(2) Binoculars

(3) Tree trunk

- (4) None of these
- **20.** How was the panther stalking his prey?
 - (1) Hiding behind the tree trunk
 - (2) Taking advantage of every bush
 - (3) Flatten himself to the ground
 - (4) All of these

कच्चा कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

(1)

(3)

a and b

Only c

Which of the statement/s given above is/are *incorrect*?

(2)

(4)

b and c

None of these

24. खालील विधाने विचारात घ्या :

- अ. ऑक्टोबर 1945 मध्ये जवाहरलाल नेहरू यांच्या अध्यक्षतेखाली राष्ट्रीय नियोजन समितीची स्थापना झाली.
- ब. मार्च 1950 मध्ये नियोजन आयोगाची स्थापना झाली.
- क. ऑगस्ट 1952 मध्ये राष्ट्रीय विकास मंडळाची स्थापना झाली.

वरीलपैकी कोणती विधाने सत्य आहेत ?

(1) अ आणि ब

(2) ब आणि क

(3) अ आणि क

(4) वरील सर्व

Consider the following statements:

- a. The National Planning Committee was set up in October 1945 under the Chairmanship of Jawaharlal Nehru.
- b. Planning Commission was set up in March 1950.
- c. The National Development Council was set up in August 1952.

Which of the statements given above are correct?

(1) a and b

(2) b and c

(3) a and c

(4) All of the above

25. खालील विधाने विचारात घ्या :

- अ. भारतीय बँकांना प्रत्येक वर्षी अग्रक्रम क्षेत्राला 40% कर्ज देण्याची गरज आहे.
- ब परिकय बँकांनी केवळ 32% अग्रक्रम क्षेत्राल कर्ज पुरवठा करण्याचे लक्ष्यपूर्ण केले पाहिजे.
- क. सर्व भारतीय बँकांना अग्रक्रम क्षेत्राला कर्ज पुरवठा करण्याचे लक्ष्य अनिवार्य नाही.

वरीलपैकी कोणते/ती विधान/ने बरोबर आहे/आहेत ?

(1) अ आणि ब

(2) फक्त क

(3) ब आणि क

(4) यापैकी नाही

Consider the following statements:

- a. Indian Banks need to lend 40 percent to the priority sector every year.
- b. Foreign Banks have to fulfil only 32 percent priority sector lending target.
- c. All Indian Banks do not have to follow the compulsory target of priority sector lending.

Which of the statement/s given above is/are correct?

(1) a and b

(2) Only c

(3) b and c

(4) None of these

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

26.	भारती	य रिझर्व्ह बँकेची रोखता समायोजन सुविधा याला	परवान	गी देते							
	अ.	भारतीय रिझर्व्ह बँकेला रोजच्या रोज बाजारातील रोखता व्यवस्थापन करणे.									
	ब.	ब. बाजार व्याजदराचे संकेत प्रसारित करणे.									
	वर दि	त्लेल्या विधानापैकी कोणते/कोणती विधान बरोबर	आहेत	?							
	(1)	फक्तं अ	(2)	फक्त ब							
	(3)	अ आणि ब दोन्ही	(4)	वरीलपैकी कोणतेही नाही							
	Liqu	uidity Adjustment facility by RBI allo	ws								
	a.	RBI to manage market liquidity on	daily	basis.							
	b.	Transmit interest rate signals to the	e mar	ket.							
	Whi	ch of the statements given above is/a	re cor	rect?							
	(1)	Only a	(2)	Only b							
	(3)	Both a and b	(4)	None of the above							
				•							
27.	सन 2	011 मध्ये भारताचा मानवी विकास निर्देशांक		होता.							
	(1)	134	(2)	120							
	(3)	140	(4)	130							
	Indi	a's Human Development Index Numl	ber w	as in the year 2011.							
	(1)	134	(2)	120							
	(3)	140	(4)	130							
2 8.	भारत	तील पहिल्या महिला बँकेची स्थापना कोणत्या व	 र्षाच्या	अर्थ संकल्पात करण्यात आली ?							
	(1)	2010 – 11	(2)	2012 - 13							
	(3)	2013 - 14	(4)	2015 – 16							
	Indi	a's First Women's Bank was establish	hed in	which year's budget?							
	(1)	2010 – 11	(2)	2012 – 13							
	(3)	2013 – 14	(4)	2015 – 16							
				- 							

- 29. पंचायत समितीचे विसर्जन करण्यात आले असेल तर नव्याने निवडून आलेल्या पंचायत समितीचा कार्यकाल किती असतो ?
 - (1) 6 महिने
 - (2) $2\frac{1}{2}$ वर्षे
 - (3) एक वर्ष
 - (4) विसर्जित पंचायत समितीच्या उर्वरित कार्यकाल इतका

If the Panchayat Samiti is immersed, then how long will be the tenure of the newly elected Panchayat Samiti?

- (1) 6 months
- (2) $2\frac{1}{2}$ years
- (3) One year
- (4) As much as the remaining tenure of the immersed Panchayat Samiti

ंजोङ	या जुळवा	: .		
अ.	अनुच्छेद	- 156	I.	राज्यपालांचे कार्यकारी अधिकार
ब.	अनुच्छेद	- 154	II.	राज्यपालांचा कालावधी
क.	अनुच्छेद	- 153	Ш	. राज्यपालांचे स्वेच्छाधीन अधिकार
ड.	अनुच्छेद	- 155	IV	. राज्यपाल पद
			V.	
	अ	ब	क	ड
(1)	III	II	V	I
(2)	II	I	IV	V
(3)	I	II	III	IV
(4)	III	I	IV	II
Mat	ch the p	airs :		
a.		e – 156	I.	Executive authority of Governor
b.	Article	e - 154	II.	Tenure of Governor
c.	Article	e - 153	III	. Discretionary power of Governor
\mathbf{d} .	Article	= -155	IV	Office of Governor
			V.	Appointment of Governor
	а	b	c	d
(1)	III	II	V	I
(2)	II	1	IV	V
(3)	I	II	III	IV
(4)	III	I	\mathbf{IV}	II

M11			12		A				
31.	रन फॉर लाडली हाफ मॅरेथॉन स्पर्धा कोणत्या कारणासाठी आयोजित करण्यात आली होती ?								
	(1)	महिला सुरक्षासंबंधी लोकांमध्य	पे जागरूकता निर्माण होण्य	यासाठ <u>ी</u>					
	(2)	लहान मुलांबद्दल जागरूकता	निर्माण करणे व त्यांच्या	उज्बल भविष्यासाठी					
	(3)	लहान मुलींच्या भविष्याबद्दल	। जागरूकता निर्माण करण	यासाठी					
	(4)	दिव्यांगाप्रती लोकांमध्ये प्रेम नि	नेर्माण करण्यासाठी						
	For	what reason were the 'I	Run for Laadli Half	Marathon Competitions' organize	ed?				
	(1)	To cause awareness ar	mongst the people a	about women protection					
	(2)	To cause awareness al	oout children and t	heir better future					
	(3)	To cause awareness al	oout little girls for t	heir better future					
	(4)	To cause love for phys	ically handicapped	people					
32.	भारतात वार्ताहरांचे हल्ल्यापासून संरक्षण करणारा कायदा मंजूर करणारे खालीलपैकी कोणते राज्य पहिले ठरलं आहे ?								
	(1)	गोवा	(2)	हरियाणा					
	(3)	महाराष्ट्र	(4)	मध्य प्रदेश					
		ich of the following be rnalists from attack?	came the first Sta	te in India to pass a law to pr	otect				
	(1)	Goa	(2)	Haryana					
	(3)	Maharashtra	(4)	Madhya Pradesh					
33.	सन :		— ोमा बंद केली जाणार अस	————————————————————— तल्याची घोषणा भारताच्या गृहमंत्र्यांनी केली ३	—— भाहे ?				
	(1)	भारत – पाकिस्तान							
	(2)	भारत - नेपाळ							
	(3)	भारत – बांगलादेश							
	(4)	भारत – श्रीलंका							

Which border of India will be sealed by 2018 as announced by the Home Minister of India?

- **(1)** India - Pakistan
- India Nepal **(2)**
- India Bangladesh (3)
- India Sri Lanka

34.	'दि गुटमाकर' आणि 'इंडियन इंस्टीट्यूट ऑफ पॉप्युलेशन साइंसेजच्या' 2017 च्या अहवाल नुसार भारतामधे प्रत्येकवर्षी किती महिलांचा गर्भपातामुळे मृत्यु होतो ?							
	(1) 10 लाख							
	(2) 20 लाख							
	(3) 25 লাख							
	(4) 30 লাভ্ৰ							
	According to year 2017 report of 'The International Institute of Gutmaker' and 'Indian Institute of Population Sciences', how many women died because of abortion in every year in India?							
	(1) 10 Lakh							
	(2) 20 Lakh							
	(3) 25 Lakh							
	(4) 30 Lakh							
35.	मानव संसाधन विभागाचे केंद्रीय मंत्री श्री प्रकाश जावडेकर यांनी रुसा (RUSA) साठीचे पोर्टल आणि मोबाईल ऑप सुरु केले. तेंव्हा रुसा (RUSA) म्हणजे काय ? (1) राजकीय उच्च शिक्षण अभियान (2) राष्ट्रीय उच्चतर शिक्षण आंदोलन (3) राष्ट्रीय उच्चतर शिक्षण आंदोलन (4) रिजनल उच्च शिक्षा अभियान Union Minister of Human Resource Development Shri Prakash Javadekar has launched Portal and mobile app for RUSA. What is the meaning of RUSA? (1) Rajkiya Uchch Shikshan Abhiyan (2) Rashtriya Uchchatar Shiksha Abhiyan (3) Rashtriya Uchchatar Shikshan Andolan (4) Regional Uchch Shiksha Abhiyan							
36.	जी.एस.टी. (GST) ची अंमलबजावणी कोणत्या घटनादुरुस्ती कायद्याने करण्यात आली ? (1) 101 (2) 108							
	(3) 120 (4) 106							
	GST was introduced as which Amendment Act?							
	(1) 101 (2) 108							

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

(3)

120

P.T.O.

(4)

106

- 37. खालीलपैकी ओझोनचे सर्वात मोठे मारक शत्रू कोणते आहेत ?
 - (1) क्लोरिन व नायट्रोजन
 - (2) कार्बन मोनोक्साइड
 - (3) कार्बन डायऑक्साइड
 - (4) सल्फर डायऑक्साइड

Which of the following is most harmful for ozone depletion?

- (1) Chlorine and nitrogen
- (2) Carbon monoxide
- (3) Carbon dioxide
- (4) Sulphur dioxide
- 38. श्री सुंदरलाल बहुगुणा यांच्या नेतृत्वाखाली भारतातील कोणत्या राज्यात कोणती चळवळ उभारली होती ?
 - (1) चिपको चळवळ तमिळनाडु
 - (2) सायलेंट व्हॅली चळवळ केरळ
 - (3) नर्मदा बचाव आंदोलन मध्य प्रदेश
 - (4) ॲपिको चळवळ कर्नाटक

Which movement in a State of India was lead under the leadership of Sundarlal Bahuguna?

- (1) Chipko Revolution Tamil Nadu
- (2) Silent Valley Revolution Kerala
- (3) Narmada Bachao Andolan Madhya Pradesh
- (4) Appiko Revolution Karnataka

- 39. 11 डिसेंबर 1946 रोजी भारतीय घटना समितीचे अध्यक्ष म्हणून कोणाची निवड करण्यात आली ?
 - (1) डॉ. राजेंद्र प्रसाद
 - (2) डॉ. बाबासाहेब आंबेडकर
 - (3) डॉ. सच्चिदानंद सिन्हा
 - (4) पुरुषोत्तम दास टंडन

Who was selected as the President of Constitution Committee of India on 11th December 1946?

- (1) Dr. Rajendra Prasad
- (2) Dr. Babasaheb Ambedkar
- (3) Dr. Sachidanand Sinha
- (4) Purushottam Das Tandon
- 40. पुढील संस्थांची कालक्रमानुसार मांडणी करा:
 - अ. छत्रपती शिवाजी कॉलेज, सातारा
 - ब. महाराजा संयाजीराव हायस्कूल, सातारा
 - क. सिल्व्हर ज्युबिली रूरल ट्रेनिंग कॉलेज, सातारा
 - ड. छत्रपती शाह बोर्डिंग हाऊस, सातारा
 - (1) अ, ब, क, ड
 - (2) ड, क, ब, अ
 - (3) ड, ब, क, अ
 - (4) ड, अ, क, ब

Arrange the following institutions in their chronological order:

- a. Chhatrapati Shivaji College, Satara
- b. Maharaja Sayajirao High School, Satara
- c. Silver Jubilee Rural Training College, Satara
- d. Chhatrapati Shahu Boarding House, Satara
- (1) a, b, c, d
- (2) d, c, b, a
- (3) d, b, c, a
- (4) d, a, c, b

41.		en a body is in equilibrium under the action of three forces, then each force is portional to the angle between the other two forces.				
	(1)	cos				
	(2)	sin				
	(3)	tan				
	(4)	cot				
42.	fixe velo	If u and v are initial and final velocities of a body having an indirect impact on a fixed plane and α and θ are angles with line of impact made by initial and final velocities and if e is coefficient of restitution, then Newton's law of collision which holds good for this impact is				
	(1)	$v \cos \theta = eu \cos \alpha$				
	(2)	$u \cos \theta = ev \cos \alpha$				
	(3)	$v \sin \theta = eu \sin \alpha$				
	(4)	$u \sin \theta = eu \sin \alpha$				
43.	Complete determination of resultant force of non-concurrent forces is					
	a.	determination of magnitude.				
	b.	determination of direction.				
	c.	determination of point on its line of action.				
	(1)	Only a and b				
	(2)	Only a and c				
	(3)	a, b and c				
	(4)	None of these				
44.	this	Alembert's principle states that if a rigid body is acted upon by system of forces, system of forces may be reduced to a single resultant force whose be found out by the method of graphic statics.				
	(1)	magnitude				
	(2)	direction				
	(3)	line of action				
	(4)	magnitude, direction and line of action				

- 45. The centre of gravity of right circular cone of height 'h' lies at a distance _____ from vertex along the axis of rotation.
 - $(1) \quad \frac{h}{4}$

 $(2) \quad \frac{3h}{4}$

 $(3) \quad \frac{h}{3}$

- $(4) \quad \frac{2h}{3}$
- 46. In order to study the dynamic response of a body, it is important to locate the body's
 - (1) colour

(2) emissivity

(3) centre of mass

- (4) None of these
- 47. The component of the resultant linear impulse along any direction is equal to
 - (1) zero.
 - (2) change in the component of momentum in that direction.
 - (3) change in the component of momentum in opposite direction.
 - (4) None of these
- 48. In technique used to reduce a coplanar or parallel force system to a single resultant force, the resultant force is equal to
 - (1) sum of all forces in the system.
 - (2) sum of all positive forces in the system.
 - (3) sum of all negative forces in the system.
 - (4) None of these
- 49. A projectile is projected from a point on ground with velocity of projection 'u' and angle of projection 'α'. How much maximum height can the projectile reach?
 - (1) $h = \frac{u \sin \alpha}{2g}$
 - $(2) \quad h = \frac{u^2 \sin^2 \alpha}{2g}$
 - (3) $h = \frac{u^2 \sin \alpha}{2g}$
 - (4) $h = \frac{u \sin^2 \alpha}{2g}$

54. An automobile of mass 1000 kg moving at a velocity 54 kmph, moves along a sag. This sag is a part of a circle of 15 m radius. What is the reaction between the automobile and road while travelling at the lowest part of sag?

(1) 24.8 kN

(2) 248 kN

(3) 2480 kN

(4) 24800 kN

55.		required minimum compressive strength of building bricks as recommended by $077-1957$ and 1970 is
	(1)	140 kg/cm^2
	(2)	$105 \mathrm{kg/cm^2}$
	(3)	70 kg/cm^2
•	(4)	35 kg/cm^2
56.		minimum compressive strength for rapid hardening portland cement after
	(1)	18 N/mm ²
	(2)	28 N/mm ²
	(3)	24 N/mm ²
	(4)	None of these
57.		maximum settlement for the isolated foundation on clayey soils should be ted to
	(1)	65 mm
	(2)	25 mm
	(3)	40 mm
	(4)	100 mm
58.	As p	per IS 1893 – 2002, Zone I shown in 'Seismic Zones of India' map corresponds to
	(1)	Maximum intensity I
	(2)	Maximum intensity III
	(3)	Maximum intensity V
	(4)	Maximum intensity VII
59.	Whi	ich of the following is a disadvantage of framed structures?
	(1)	Flexibility in planning
	(2)	Speed of construction
	(3)	Economy
	(4)	Span length

60. What is fineness modulus of course san	ď	?
---	---	---

- (1) 2.9 3.2
- (2) $2\cdot 4 3\cdot 0$
- (3) 1.5 2.1
- $(4) \quad 1.8 2.4$

61. A total station is a combination of

- (1) Theodolite and EDM
- (2) Electronic theodolite and EDM
- (3) Compass and EDM
- (4) Electronic compass and EDM

62. Which of the following Electronic Distance Measurements is useful in major construction where alignment is to be done precisely and quickly?

- (1) Optical theodolite
- (2) Digital theodolite
- (3) Laser theodolite
- (4) Vernier theodolite

63. Reduced Level (R.L.) of the floor at building is 74·400 m, staff reading on the floor is 1·625 m and staff reading when it is held inverted with bottom touching the ceiling of a hall is 2·870 m, then the height of the ceiling above the floor is

(1) 3·593 m

(2) 3.953 m

(3) 4·594 m

(4) 4·495 m

64. A lamp at the top of a lighthouse is visible just above the horizon from a station at sea level. The distance of the lamp from the station is 30 km. The height of the lighthouse is

- (1) 60.57 m
- (2) 30.0 m
- (3) 20.61 m
- (4) 54.0 m

- 65. A device/devices which transfers heat from low temperature region to high temperature is
 - (1) Only refrigerator
 - (2) Only heat pump
 - (3) Both refrigerator and heat pump
 - (4) None of these
- 66. _____ possesses lowest thermal conductivity among the following materials :
 - (1) Sawdust

(2) Ash

(3) Glass wool

- (4) Freon
- 67. _____ is not the assumption of Fourier's equation of heat conduction.
 - (1) Constant temperature difference
 - (2) Uniform area of cross-section
 - (3) Steady heat flow
 - (4) Homogeneous substance
- 68. If the designation of a deep-groove ball bearing is 6014, then bore diameter is _____ mm.
 - (1) 60

(2) 70

(3) 84

- (4) 74
- 69. If 'm' is the mass per unit length of belt, 'T' is maximum allowable belt tension and ' T_c ' is centrifugal tension, for maximum power transmission, the velocity of the belt is

 - b. $\sqrt{\frac{T_c}{T_c}}$
 - c. $\sqrt{\frac{3T}{m}}$
 - d. $\sqrt{\frac{m}{T_a}}$

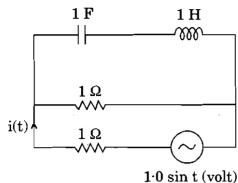
Which of the given above is/are correct?

- (1) Only c
- (2) Only d
- (3) a and b
- (4) c and d

(4) difference between maximum and minimum energy. कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

sum of maximum and minimum energy.

ratio of maximum and minimum energy.


ratio of minimum and maximum energy.

(1)

(2)

(3)

The RMS value of the current i(t) in the circuit shown below is 75.

- (1) $\frac{1}{2}$ A
- (2) $\frac{1}{\sqrt{2}}$ A
- (3) 1 A
- (4) $\sqrt{2}$ A
- **76.** Three resistances of 3 Ω each are connected in delta. The value of the resistance in the equivalent star is
 - 27Ω **(1)**
- 9Ω (2)
- (3) 1.5Ω
- (4) 1Ω
- 77. The maximum power transferred to a load for a resistive Thevenin's circuit and condition for which it occurs are

$$(1) \quad P_{max} = \frac{4V_T^2}{R_T} \text{ and } R_L = R_T \qquad \qquad (2) \quad P_{max} = \frac{V_T^2}{4R_T} \text{ and } R_L = R_T$$

(2)
$$P_{max} = \frac{V_T^2}{4R_T}$$
 and $R_L = R_T$

(3)
$$P_{\text{max}} = \frac{2V_T^2}{R_T}$$
 and $R_L = R_T$

(3)
$$P_{\text{max}} = \frac{2V_T^2}{R_m}$$
 and $R_L = R_T$ (4) $P_{\text{max}} = \frac{V_T^2}{2R_m}$ and $R_L = \frac{R_T}{2}$

- 78. An electric heater is rated as 1 kW, 250 V. Calculate the current taken by it if it is connected to 200 V supply
 - **(1)** 4.5 A

(2)3 2 A

(3)5 A

- 3 A **(4)**
- 79. For a series R-C circuit V_R is (the voltage across the Resistance, R and) measured to be 8 V and V_C is (the voltage across the capacitance, C and) measured as 6 V. The ac source voltage will be
 - **(1)** 14 V
- (2)8 V
- **(3)** 10 V
- (4)12 V

- 80. The open circuit test in a transformer is performed with
 - (1) rated transformer voltage
 - (2) rated transformer current
 - (3) direct current
 - (4) high frequency supply
- 81. RMS value of a current given by

 $i = 10 + 5 \cos (628 t + 30^{\circ}) is$

(1) 3.53 A

(2) 5 A

(3) 10.6 A

- (4) 15.6 A
- 82. A balanced star connected load has a line voltage V_L , line current I_L and impedance per phase Z. When it is connected in equivalent delta connected system for same line values of voltage and current as in case of star connected system, the per phase impedance will be
 - (1) $Z\Omega$
 - (2) $\sqrt{3} \mathbf{Z} \Omega$
 - (3) $3Z\Omega$
 - (4) Not determined from given data
- 83. In the equivalent circuit of a practical transformer, its magnetizing impedance is determined by
 - (1) Short circuit test
 - (2) Open circuit test
 - (3) Both short circuit and open circuit tests
 - (4) Other than above tests
- 84. A 3-phase load is balanced if all the three phases have the same
 - (1) impedance
 - (2) power factor
 - (3) impedance and power factor
 - (4) None of these

85. The length of the curve $y = \frac{2}{3}x^{3/2}$ between x = 0 and x = 1 is

 $(1) \quad 0.27$

 $(2) \quad 0.67$

(3) 1

(4) 1.22

86. In Taylor's series expansion of exp (x) + sin (x) about the point x = π , the coefficient of $(x - \pi)^2$ is

(1) $\exp(\pi)$

(2) $0.5 \exp(\pi)$

(3) $\exp{(\pi)} + 1$

(4) $\exp{(\pi)} - 1$

87. The function $f(x) = 2x^3 - 3x^2 - 36x + 2$ has its maxima at

 $(1) \quad \text{Only } \mathbf{x} = -2$

(2) Only $\mathbf{x} = 0$

(3) Only x = 3

(4) Both x = -2 and x = 3

88. The coefficient of the x^5 term in the Maclaurin polynomial for $\sin (2x)$ is

(1) 0

(2) 0.0083333

(3) 0.016667

(4) 0.26667

89. In the matrix equation Px = q, which of the following is a necessary condition for the existence of at least one solution for the unknown vector x?

- (1) Augmented matrix [Pq] must have the same rank as matrix P
- (2) Vector q must have only non-zero elements
- (3) Matrix P must be singular
- (4) Matrix P must be square

90. If $(D^2 + 1) y = \sin x \sin 2x$, then the particular integral is

- (1) $\frac{1}{4} \times \sin x + \frac{1}{16} \cos 3x$
- (2) $\frac{1}{4} x \sin x \frac{1}{16} \cos 3x$
- (3) $\frac{1}{4} x \sin 2x + \frac{1}{16} \cos 3x$
- (4) $\frac{1}{4} x \sin 2x \frac{1}{16} \cos 3x$

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

P.T.O.

If x = uv and $v = \frac{u + v}{u - v}$, then $\frac{\partial(u, v)}{\partial(x, v)}$ is equal to 91.

 $\frac{(u+v)^2}{2uv}$

 $(2) \quad \frac{(\mathbf{u} + \mathbf{v})^2}{4\mathbf{u}\mathbf{v}}$

 $(4) \quad \frac{(u-v)^2}{2uv}$

If $\phi(x, y, z) = 0$, then the value of $\left(\frac{\partial z}{\partial y}\right)_{x} \left(\frac{\partial x}{\partial z}\right)_{y} \left(\frac{\partial y}{\partial x}\right)_{z}$ is equal to 92.

- **(1**) 0
- (2)
- $(3) -\frac{1}{2} \qquad (4) -1$

Given a function $f(x, y) = 4x^2 + 6y^2 - 8x - 4y + 8$. The optimum value of f(x, y)93.

- **(1)** is a minimum equal to 10/3.
 - (2)is a maximum equal to 10/3.
 - **(3)** is a minimum equal to 8/3.
 - **(4)** is a maximum equal to 8/3.

For $\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$, the particular integral is 94.

(1) $e^{-3x} (1 + \log x)$

(2) $-e^{-3x}(1 + \log x)$

(3) $e^{3x} (1 + \log x)$

(4) $-e^{3x}(1 + \log x)$

 $\int \frac{\log (1 + a \sin^2 x)}{\sin^2 x} dx$ is also shown as 95.

 $(1) \quad \pi \left(\sqrt{a-1} + 1 \right)$

(2) $\pi \left(\sqrt{a+1} - 1 \right)$

 $(3) \quad \frac{\pi}{2} \left(\sqrt{a+1} - 1 \right)$

(4) $\pi \left(\sqrt{a-1} - 1 \right)$

96. The partial differential equation $5 \frac{\partial^2 z}{\partial x^2} + 6 \frac{\partial^2 z}{\partial y^2} = xy$ is classified as

(1) elliptic

(2) parabolic

(3) hyperbolic

(4) None of these

97. The area of the curve $a^2x^2 = y^3(2a - y)$ is found out to be

- (1) πa
- (2) πa^3
- (3) π^2 a
- (4) πa^2

98. Consider the equation:

$$y'' + \left(\frac{x^2 \cdot \sin(x)}{e^2 \sqrt{\pi}}\right)^8 (y')^3 + xy = 10$$
, is

- (1) an ordinary linear differential equation of order 2.
- (2) an ordinary non-linear differential equation of order 2.
- (3) an ordinary linear differential equation of order 3.
- (4) an ordinary non-linear differential equation of order 3.

99. Matrix [A] = $\begin{bmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{bmatrix}$

The rank of matrix is

(1) 4

(2) 1

(3) 3

(4) 2

100. Choose the correct set function which are linearly dependent:

- (1) $\sin x$, $\sin^2 x$ and $\cos^2 x$
- (2) $\cos x$, $\sin x$ and $\tan x$
- (3) $\cos 2x$, $\sin^2 x$ and $\cos^2 x$
- (4) $\cos 2x$, $\sin x$ and $\cos x$

सूचेना 🗕 (पृष्ठ 1 वरून पुढे.....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली बेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

प्र. क्र. 201, सतीची चाल नष्ट करण्यासाठी कोणी मूलत: प्रयत्न केले ?

- (1) स्वामी दयानंद सरस्वती
- (2) ईश्वरचंद्र विद्यासागर

(3) राजा राममोहन रॉय

(4) गोपाळकृष्ण गोखले

ह्या प्रश्नाचे योग्य उत्तर "(3) राजा राममोहन रॉय" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल, यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "③" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्र. **季**. 201. ①

2

(4)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तर-क्रमांक हा तुम्हाला स्वंतत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा, गट अ व ब संयुक्त (पूर्व) परीक्षा - 2018 परीक्षेचा दिनांक : 08 जुलै, 2018 विषय : मराठी,, इग्रंजी, सामान्य अध्ययन आणि अभियांत्रिकी अभियोग्यता चाचणी

(जा.क्र.: 26/2018)

महाराष्ट्र लोकसेवा आयोगामार्फत "महाराष्ट्र अभियांत्रिकी सेवा, गट अ व ब संयुक्त (पूर्व) परीक्षा - 2018" या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

उत्तरत					
प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
1	2	2	1	4	
2	3	3	2	2	
3	4	4	3	1	
4	4	2	4	2	
5	2	1	2	3	
6	3	2	4	4	
7	4	2	2	4	
8	2	3	2	2	
9	1	4	3	2	
10	2	4	4	3	
11	3	4	3	2	
12	4	3	4	4	
13	3	2	3	3	
14	4	4	2	4	
15	2	3	4	3	
16	#	4	4	2	
17	4	2	#	4	
18	2	2	4	#	
19	2	4	2	4	
20	4	#	2	2	
21	1	4	1	1	
22	1	2	3	4	
23	4	1	#	1	
24	2	3	2	2	
25	1	#	2	1	

KEY प्रश्न	KEY प्रश्न उत्तरे						
प्रश्न क्रमांक	संच A	संच B	तर संच C	संच D			
26	3	2	1	1			
27	1	2	1	4			
28	3	1	4	2			
29	4	1	1	1			
30	2	4	2	3			
31	1	1	1	1			
32	3	2	1	3			
33	#	1	4	4			
34	2	1	2	2			
35	2	4	1	1			
36	1	2	3	3			
37	1	1	1	#			
38	4	3	3	2			
39	1	1	4	2			
40	2	3	2	1			
41	2	4	3	2			
42	1	2	4	4			
43	3	#	2	2			
44	4	3	2	2			
45	#	4	3	3			
46	3	1	2	1			
47	2	2	1	3			
48	4	3	3	3			
49	2	4	3	2			
50	1	1	4 e:10 th Se	3			

Date:10th Sept, 2018

प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
51	3	3	2	4	
52	1	4	4	2	
53	1	2	2	1	
54	1	2	2	4	
55	4	3	3	1	
56	2	2	1	1	
57	#	1	3	#	
58	3	3	3	4	
59	4	3	2	1	
60	1	4	3	4	
61	2	2	4	2	
62	3	4	2	1	
63	4	2	1	4	
64	1	2	4	2	
65	3	3	1	4	
66	4	1	1	3	
67	2	3	#	2	
68	2	3	4	1	
69	3	2	1	3	
70	2	3	4	4	
71	1	4	2	#	
72	3	2	1	3	
73	3	1	4	2	
74	4	4	2	4	
75	2	1	4	2	

प्रश्न	उत्तरे				
क्रमांक	संच A	संच B	संच C	संच D	
76	4	1	3	1	
77	2	#	2	3	
78	2	4	1	1	
79	3	1	3	1	
80	1	4	4	1	
81	3	2	#	4	
82	3	1	3	2	
83	2	4	2	#	
84	3	2	4	3	
85	4	4	2	4	
86	2	3	1	1	
87	1	2	3	2	
88	4	1	1	3	
89	1	3	1	4	
90	1	4	1	1	
91	#	#	4	3	
92	4	3	2	4	
93	1	2	#	2	
94	4	4	3	2	
95	2	2	4	3	
96	1	1	1	2	
97	4	3	2	1	
98	2	1	3	3	
99	4	1	4	3	
100	3	1	1	4	

Date:10th Sept, 2018

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

अहराष्ट्र आक्रेंट्रांत्रिकी सेता (स्टाटान्य) (मुख्य) परीक्ता-2018

प्रश्नपुस्तिका क्रमांक

BOOKLET No.

2018

.

प्रश्नपुस्तिका-I

K12

संच क्र.

102933

स्थापत्य अभियांत्रिकी पेपर - 1

स्थापत्य आमयाात्रका पपर – 1

वेळ: 2 (दोन) तास

्रकूण प्रश्न : 100 एकूण गुण : 200

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

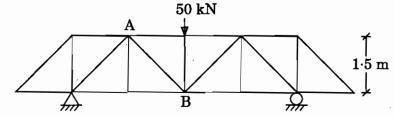
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परिक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीदं

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपयैत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपयैत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तस्तुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा


वेक्षकांच्या सूचनेविना हे सील उघड़ नये

- 1. "The partial derivative of the total internal energy in a beam, with respect to the load applied at any point is equal to the deflection at that point." This is the statement of
 - (1) Moment area theorem
- (2) Castigliano's second theorem
- (3) Conjugate beam theorem
- (4) Müller Breslau's influence theorem
- 2. For a fixed beam AB, the support B settles by δ downward, then what is the direction of rotation of point A and B?
 - (1) ve, ve

(2) + ve, + ve

(3) + ve, - ve

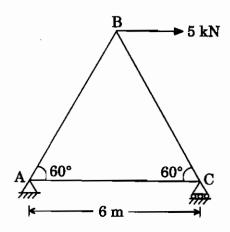
- (4) ve, + ve
- 3. The force in member AB of the truss shown in the figure below is

----- 6 panels @ 1.5 m each -----

(1) 25 kN (c)

(2) $25\sqrt{2} \text{ kN (t)}$

(3) $25 \sqrt{2} \text{ kN (c)}$


- (4) 25 kN (t)
- 4. For the given figure, the moment at A, whose far end is fixed, MA is

- (1) $\frac{3EI}{I}$. θ_A
- (2) $\frac{4EI}{I}$. θ_A
- (3) $\frac{2EI}{I}$. θ_A
- (4) $\frac{6EI}{I}$. θ_A

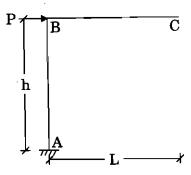
- 5. The distribution factor is
 - (1) Ratio of stiffness of member and member
 - (2) Ratio of stiffness of near joint and far joint
 - (3) Ratio of stiffness of member and joint (sum of member stiffness)
 - (4) Ratio of stiffness of joint and member

6. Force in the member BC of the truss shown in the figure below is

- (1) 5 KN (tensile)
- (2) Zero
- (3) 2.88 KN (compressive)
- (4) 5 KN (compressive)
- 7. A fixed beam AB of span L is subjected to a clockwise moment M at a distance 'a' from end A. Fixed end moment at end A will be
 - (1) $\frac{M}{L^2} (L-a) (L-3a)$

(2) $\frac{M}{L^2}$ a (2L - 3a)

(3) $\frac{M}{L^2} a (L-a)$

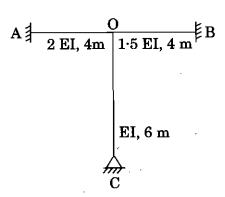

- (4) $\frac{M}{L^2} (L-a) (2L-a)$
- 8. A beam of span l is fixed at one end and simply supported at other end. It carries uniformly distributed load of w per unit run over the whole span. The reaction (R) at the simply supported end is
 - $(1) \quad \mathbf{R} = \frac{3}{8} \ \mathbf{w}l$

(2) $R = \frac{5}{8} wl$

(3) $R = \frac{1}{2} wl$

- $(4) \quad \mathbf{R} = \frac{1}{3} \ \mathbf{w}l$
- Degree of static indeterminacy of a rigid jointed plane frame having 15 members,
 3 reaction components and 14 joints is
 - (1) 2
- (2) 3
- (3) 6
- (4) 8

10. A rigid cantilever frame ABC is loaded and supported as shown in the figure below. The horizontal displacement of point C is

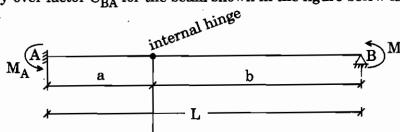


 $(1) \quad \frac{2 \text{ Ph}^3}{3 \text{EI}}$

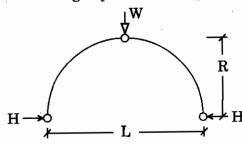
 $(2) \quad \frac{Ph^2(2h+L)}{2EI}$

 $(3) \quad \frac{\text{Ph}^3}{3\text{EI}}$

- $(4) \quad \frac{Ph^2(h+L)}{3EI}$
- 11. The distribution factor for the members OA, OB and OC are



- (1) 0.125, 0.375, 0.5
- (2) 0.375, 0.5, 0.125
- (3) 0.5, 0.125, 0.375
- (4) 0.5, 0.375, 0.125


- 12. The stiffness co-ethcients K_{ij} indicate
 - (1) Force at i due to a unit deformation at j
 - (2) Deformation at j due to a unit force at i
 - (3) Deformation at i due to a unit force at j
 - (4) Force at j due to a unit deformation at i
- 13. A beam EI-constant of span L is subjected to clockwise moments M at both the ends A and B. The rotation of end A works out to be

- $(1) \quad \frac{ML}{2EI}$
- $(2) \quad \frac{ML}{3EI}$
- $(3) \quad \frac{ML}{4EI}$
- $(4) \quad \frac{\text{ML}}{6\text{EI}}$
- 14. Carry-over factor C_{BA} for the beam shown in the figure below is

- (1) a/b
- (2) 3/4
- (3) a/L
- (4) 1/2
- 15. For a three-hinged parabolic arch, what will be the ratio L/R to satisfy H = W?

- $(1) \quad 0.50$
- **(2)** 1.50
- (3) 2.00
- **(4)** 4·00

14	6.	Match	the	following	ng :
T.	D.	March	TITE	TOHOMIT	-F -

- Three-hinged arch a.
- Two-hinged arch b.
- Hingeless arch c.
 - b
- Π Ι **(1)**
- Π (2)III
- III ΙΙ Ι (3)
- II IIIΙ **(4)**

- indeterminate third I. Statically degree
- indeterminate first Statically to II. degree
- Statically determinate III.

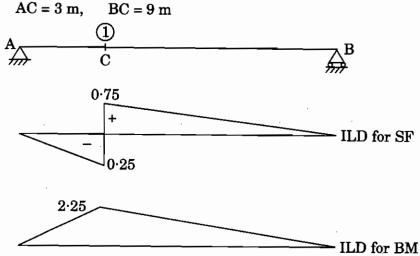
17. What is true for flexibility and stiffness matrix?

c

III

Ι

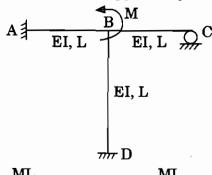
- They are square matrix a.
- The diagonal elements are non-zero and having positive values b.
- Element ij= Element ji c.
- d. They are inverse of each other


Answer Options:

- **(1)** a and b
- **(2)** All of the above
- (3) c and d
- **(4)** a, c, and d

18. Muller - Breslau Principle in structural analysis is used for

- Drawing ILD for any force function **(1)**
- (2)Writing virtual work equation
- Superposition of load effects (3)
- **(4)** None of the above


19. The given figure shows ILD for SF and BM at section 1

The value of SF and BM at 1 due to concentrated load of 20 kN at mid span will be

- (1) 0.75 kN and 2.25 kN-m
- (2) 5 kN and 5 kN-m
- (3) 7.5 kN and 10 kN-m
- (4) 10 kN and 30 kN-m

20. All members of the frame shown below have the same flexural rigidity EI and length L. If a moment M is applied at joint B, the rotation of the joints is

- $(1) \quad \frac{ML}{12E}$
- $(2) \quad \frac{ML}{11EI}$
- $(3) \quad \frac{ML}{8EI}$
- $(4) \quad \frac{\text{ML}}{7\text{EI}}$
- 21. A stiffness matrix is to be generated for beam AB as horizontal flexural member. As per the method adopted for calculation of stiffness matrix, if end A is given translational displacement in vertically upward direction, the end forces generated at end B' are
 - (1) No forces at end B
 - (2) 12 EI/L³ vertical force and 6EI/L² moment
 - (3) -6 EI/L² vertical force and 2EI/L moment
 - (4) -6 EI/L² vertical force and 4EI/L moment

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

22. If the stiffness matrix of beam element is given as $\frac{2EI}{L}\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, then the

flexibility matrix is

 $(1) \quad \frac{L}{6EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

 $(2) \quad \frac{L}{2EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

 $(3) \quad \frac{L}{3EI} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

 $(4) \quad \frac{L}{6EI} \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$

23. The inclination of a lacing bar with the axis of the compression member is θ . Then ' θ ' shall **not** be less than

- (1) 30°
- (2) 40°
- (3) 50°
- (4) 70°

24. A column splice is used to increase

- (1) the length of the column
- (2) the strength of the column
- (3) the rigidity of the column
- (4) the cross-sectional area of the column

25. In a cantilever plate girder to prevent web buckling, horizontal stiffeners are provided running along the span. They are provided

- (1) below the neutral axis
- (2) over the entire cross-section (above as well as below neutral axis)
- (3) above the neutral axis
- (4) None of the above

26. Number of bolts requited in a bolted joint is equal to

 $(1) \quad \frac{\text{Force}}{\text{Bolt value}}$

- $(2) \frac{Force}{Strength of bolt in shearing}$
- $(3) \frac{Force}{Strength of bolt in bearing}$
- $\frac{\text{Force}}{\text{Strength of bolt in tearing}}$

27. The deflection of beams may be decreased by

- (1) Increasing the depth of beam
- (2) Increasing the span
- (3) Decreasing the depth of beam
- (4) Increasing the width of beam

- 28. The Indian standard code which deals with steel structures is
 - (1) IS: 456
- (2) IS: 875
- (3) IS: 800
- (4) IS: 1893
- 29. Slenderness ratio of lacing bars should not exceed
 - (1) 100
- (2) 120
- (3) 145
- (4) 180

- 30. The effective length of fillet weld is taken as
 - (1) the actual length plus twice the size of weld.
 - (2) the actual length minus twice the size of weld.
 - (3) the actual length plus thrice the size of weld.
 - (4) the actual length minus thrice the size of weld.
- 31. The fusible material used in welding to dissolve and facilitate the removal of oxides and other undesirable substances is known as
 - (1) inert material

(2) inert gas

(3) flux

- (4) catalytic agent
- **32.** Which of the following equations is correct for both, subjected to both combined shear and tension?

Where, V = Applied shear at service load

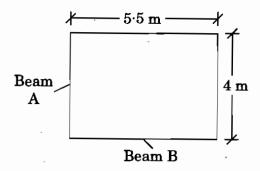
 V_{sdf} = Design shear strength

 T_e = Externally applied tension at service load

 $T_{ndf} = Design tension strength$

- $(1) \quad \left(\frac{V}{V_{sdf}}\right)^2 + \left(\frac{T_e}{T_{ndf}}\right)^2 \le 1$
- (2) $\left(\frac{V}{V_{sdf}}\right)^2 + \left(\frac{T_e}{T_{ndf}}\right)^2 \ge 1$
- $(3) \quad \left(\frac{V}{V_{sdf}}\right) + \left(\frac{T_{e}}{T_{ndf}}\right) \leq 1$
- $(4) \quad \left(\frac{V}{V_{sdf}}\right) + \left(\frac{T_e}{T_{ndf}}\right) \ge 1$
- 33. What is the yield strength of bolt of class 4.6?
 - (1) 400 N/mm^2

(2) 240 N/mm^2

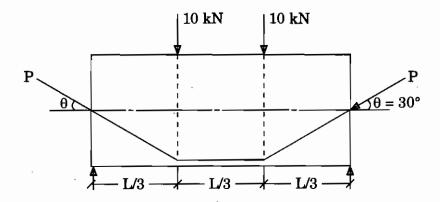

 $(3) 250 \text{ N/mm}^2$

(4) 500 N/mm^2

- 34. What are the different limit states of design as per IS 456: 2000?
 - a. Limit state of failure
 - b. Limit state of damage
 - c. Limit state of collapse
 - d. Limit state of serviceability

Answer Options:

- (1) a and d
- (2) b and c
- (3) c and d
- (4) a and b
- 35. Maximum shear force for three equal spans of beam/slab occur at
 - (1) inner side of end support
 - (2) inner side of support next to end support
 - (3) outer side of support next to end support
 - (4) outer side of end support
- 36. In the design of slab, the diameter of reinforcing bars shall not exceed
 - (1) one-eighth of overall thickness of slab
 - (2) one-fourth of overall thickness of slab
 - (3) one-half of overall thickness of slab
 - (4) one-third of overall thickness of slab
- 37. Determine the slab area of which load is acting on supporting beams A and B



- (1) $5.5 \text{ m}^2 \text{ and } 7.0 \text{ m}^2$
- (2) $4.0 \text{ m}^2 \text{ and } 5.5 \text{ m}^2$
- (3) $7.0 \text{ m}^2 \text{ and } 4.0 \text{ m}^2$
- (4) 4.0 m^2 and 7.0 m^2

38.	A Tee-beam behaves as a rectangular beam of a width equal to its flange if its neutral axis										
	(1)	remains wi	ithin the	flange							
	(2)	remains be	low the s	slab							
	(3)	coincides w	ith the g	eometrical	centre of t	he beam					
	(4)	None of the	above								
39.	divi	According to IS 456, two-way slabs with corners held down are assumed to be divided in each direction into middle strips and edge strips such that the width o middle strip is,									
	(1)	half of the	width of	the slab							
	(2)	two-third o	f the wid	th of the sla	ab						
	(3)	three-fourt	h of the v	vidth of the	slab						
	(4)	four-fifth of	f the widt	th of the sla	ab						
40.	Spa	n effective de	epth ratio	for cantile	ver for spa	n upto 10 i	m is		_		
	(1)	7	(2)	20	(3)	26	(4)	35			
41.		ctive length				ch is effect	tively held	l in position	n and		
	(1)	0·65 <i>l</i>	. (2)	0·75 <i>l</i>	(3)	0·80 l	(4)	0·85 <i>l</i>			
42.	_	I' is the total ne top should			ing, under	transient	wind load	the lateral	sway		
	(1)	$\frac{\mathrm{H}}{200}$	(2)	$\frac{\mathrm{H}}{300}$	(3)	H 400	(4)	H 500			
43.		exially loaded at is the mini			•	-	_	of column i	s 3 m.		
	(1)	20 mm	(2)	16 mm	(3)	10 mm	(4)	0			
44.		einforced and less than	d plain co	oncrete foot	ings on so	ils, the thi	ckness at	the edge sh	all be		
	(1)	200 mm	(2)	150 mm	(3)	300 mm	(4)	250 mm			

				beam should not exceed					
	(1)	span / 350	(2)	span / 250					
	(3)	span / 480	. (4)	span / 500					
46.		maximum effective reinfor		f a bonded prestressed concrete beam					
,			(2)	0.40					
	(1) (3)	0·15 0·25	(4)	0.50					
			· · · · · · · · · · · · · · · · · · ·	·					
47.	The	e moment of resistance of a r	ectangular sec	tion depends upon					
	(1)	ultimate strain in concrete	е						
	(2)	area of high tensile tendo	ns						
	(3)	tensile strength in concret	e .						
	(4)	compressive stress in conc	erete						
48.	In case of prestressed concrete element, which statement is not correct?								
	(1) Concrete remains uncracked and it protects steel from corrosion.								
	(2)	It can be used more effect	ively in liquid r	etaining structures.					
	(3)	The stiffness of structure	is less due to w	ncracked condition of concrete.					
	(4)	Shear resisting capacity is	s increased due	to pre-compression.					
49.		_		initial internal stress to counteract the					
		ernal stress developed due to	o external loads	s is called					
	(1)	Stress concept							
	(2)	Strength concept		•					
	(3)	Force concept							
	(4)	Load balancing concept							

A simply supported beam of span 9 m is subjected to two point loads, each of 10 kN acting at $\frac{1}{3}$ of span as shown in the figure. If self-weight of beam is neglected, then how much prestressing force is required to counter-balance the external loads if $\theta = 30^{\circ}$?

- (1) 5 kN
- (2) 10 kN
- (3) 20 kN
- (4) 30 kN
- 51. The approximate value of shrinkage strain for design of post-tensioning member is Where 't' = age of concrete at transfer in days.
 - $(1) \quad \frac{0.0001}{\log_{10}(t+2)}$
 - (2) 0.0003
 - $(3) \quad \frac{0.0002}{\log_{10}(t+2)}$
 - $(4) \quad \frac{0.0003}{\log_{10}(t+2)}$

- 52. The partial safety factors for material strength are
 - (1) 1.15 for concrete and 1.5 for steel
 - (2) 1.5 for concrete and 1.15 for steel
 - (3) 1.5 for both concrete and steel
 - (4) 1.15 for both concrete and steel
- 53. A post-tensioned prestressed concrete beam is having a cross-section of 300 \times 300. The area of end block is 100 \times 100 mm. Instead of 100 \times 100 mm end block, 150 mm \times 150 mm end block is provided. What will be the reduction in bursting forces? Let the load in tendons be P_k .
 - (1) $0.03 P_k$
- (2) 0.04 P_k
- $(3) \quad 0.045 P_{lr}$
- $(4) \quad 0.05 P_{k}$
- 54. Prestressing in a concrete beam with sloping or curve profile
 - (1) increases shear strength
 - (2) increases flexural strength
 - (3) decreases shear strength
 - (4) Both (1) and (2)
- 55. The bearing stress on concrete after accounting for all losses due to relaxation of steel, elastic shortening, creep of concrete, slip and seating of anchorage shall **not** exceed _____

(where, f_{ci} is the concrete strength at transfer, A_{br} is bearing area and A_{pun} is punching area)

- (1) $0.16~f_{ci}~\sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8~f_{ci}$ whichever is smaller
- (2) $0.48 \, f_{ci} \, \sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8 \, f_{ci}$ whichever is smaller
- (3) $0.25 \ f_{ci} \ \sqrt{\frac{A_{br}}{A_{pun}}}$ or $0.8 \ f_{ci}$ whichever is smaller
- (4) $0.34 \ f_{ci} \ \sqrt{\frac{A_{br}}{A_{pun}}} \ or \ 0.8 \ f_{ci} \ whichever is smaller$

56.			ST of succeeding a	ectivity and EFT of the activity u	nder
		sideration is called			
	(1)	Total float			
	(2)	Independent float			
	(3)	Interfering float	·		
	.(4)	Free float			
57.	Wh	ich of the following are t	he methods of sch	eduling?	
	(1)	Bar charts or Gantt ch	arts	•	
	(2)	Milestone charts			
	(3)	Network anaysis			
	(4)	All of the above			
58.	The	excess of minimum avai	ilable time over ac	tivity duration is called	
	(1)	total float	(2)	free float	
	(3)	independent float	(4)	None of the above	
59.		ich of the following are that	the significant ach	ievements of Taylor towards scien	tific
	(1)	Work study			
	(2)	Incentive scheme			
	(3)	Standardisation of tool	s and equipment o	r workman and working conditions	,
	(4)	All of the above		•	
60.	Whi	ich of the following netwo	orks is activity orie	ented ?	
	(1)	PERT	(2)	CPM	
	(3)	Both (1) and (2)	(4)	None of the above	
61.	The	time required to comp	lete an activity u	ander abnormal or extremely adve	erse
	cond	litions in which everythi	ng goes wrong is c	alled	
	(1)	optimistic time		•	
	(2)	most likely time			
	(3)	pessimistic time			
	(4)	None of the above			
कच्च	 ा कामार	 पाठी जागा / SPACE FOR RO	DUGH WORK	-	

- 62. What is the purpose of job layout?
 - (1) To provide more economical methods of working
 - (2) Shorter leads of materials
 - (3) Reduction in completion time
 - (4) All of the above
- 63. Which of the following codes is relevant to fire safety?
 - (1) IS 456 2000
 - (2) IS 1256 1967
 - (3) IS 800 1950
 - (4) None of the above
- 64. What is dummy activity?
 - (1) Activity having zero duration
 - (2) Activity shown by dotted line
 - (3) Activity which shows dependency
 - (4) All of the above
- **65.** Which of the following sentences is correct?
 - (1) Except initial and end events, all events in the network are dual role events.
 - (2) All events in the network are dual role events.
 - (3) There is only one dual role event in the network.
 - (4) None of the above
- 66. PERT stands for
 - (1) Perfect Evaluation and Review Technique
 - (2) Programme Elongation and Review Technique
 - (3) Programme Evaluation and Review Technique
 - (4) None of the above

67. Floating point form representation of a real number x is denoted by $x = f \times 10^{E}$ in which 'f is called

(1) Sign bit

(2) Exponent

(3) Partial derivative

(4) Mantissa

68. What will be the next approximation for finding a real root of equation

 $x^3 - 2x - 5 = 0$; if it is solved using the Newton-Raphson method and initial approximation of x = 2?

(1) 2.4

(2) 2·3

 $(3) 2 \cdot 1$

(4) 2.2

69. An iterative formula to find \sqrt{Y} (where Y is a positive number) by the Newton-Raphson technique is given by expression

(1) $x_{i+1} = \frac{1}{4} \left(x_i + \frac{Y}{x_i} \right)$

(2) $x_{i+1} = \frac{1}{3} \left(x_i + \frac{Y}{x_i} \right)$

(3) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{Y}{x_i} \right)$

(4) $x_{i+1} = \frac{1}{4} \left(x_i - \frac{Y}{x_i} \right)$

70. The area under straight line is an estimate of the integral of f(x) between the limits a and b and the result of this integration is called trapezoidal rule. The formula used in area calculation by this rule is

- (1) $I = (a b) \frac{f(a) + f(b)}{4}$
- (2) $I = (b-a) \frac{f(b) f(a)}{2}$
- (3) $I = (b-a) \frac{f(a) + f(b)}{2}$
- (4) $I = (b-a) \frac{f(a) + f(b)}{3}$

71. The method in which both sides of equations are multiplied by non-zero constant is classified as

- (1) Gaussian elimination method
- (2) Gaussian inconsistent procedure
- (3) Gaussian consistent procedure
- (4) Gaussian substitute procedure

72.	The two segment trapezoidal rule of integration is exact for integrating at most order polynomials.								
	(1)	first	(2)	second					
	(3)	third	(4)	fourth					
73.		ision by zero during forward elin set of equation [A][X] = [C] impli		teps in Naive Gaussian Elimination of fficient matrix [A]					
	(1)	is invertible							
	(2)	is non-singular							
	(3)	may be singular or non-singula	ır						
	(4)	is singular							
74.		at will be the value of function $= -2$ and $f(1) = 1$?	$f(\mathbf{x}) = \mathbf{x}^3$	+2x-2=0 in the next iteration if					
	(1)	- 0.625	(2)	- 0·725					
	(3)	- 0-875	(4)	- 0.975					
75.		the equation $f(x) = x^2 - x - 1$ ation at second interval by bisect		oot lies between 1 and 2. The root of od is					
	(1)	1.5	(2)	2					
	(3)	1.66	(4)	1.75					
76.	The	e root of equation $x^3 - 4x - 9 = 0$	using the l	pisection method is					
	(1)	1.6875	(2)	2-6875					
	(3)	3.6875	(4)	4.6875					
77.		In the solution of simultaneous equations by the Gauss elimination method for solving equations, triangularization leads to							
	(1)	singular matrix							
	(2)	upper triangular matrix							
	(3)	diagonal matrix							
	(4)	lower triangular matrix							
कच्च	ा कामार	साठी जागा / SPACE FOR ROUGH WO	DRK	P.T.O.					

78.	Hardness of the stones can be tested by _					in the laboratory.			
	(1)	Impact stre	ngth		(2)	Abrasion st	rength		
	(3)	Mohr's scale	e		(4)	Crushing s	trength		
79.	Whi	ch of the follo	wing te	sts is used for	measur	ing the work	ability o	of the concrete ?	
	(1)	Chloride per	netratio	n test					
	(2)	Slump test							
	(3)	Initial settii	ng time	test					
	(4)	Standard co	nsisten	cy test					
80.		aggregate ra			,	the workab	ility is i	ndependent of the	
	(1)	1.0	(2)	1.5	(3)	2.0	(4)	3.0	
81.	Ran	kine's formul	a for fin	ding the minin	num de	pth of found	ation for	loose soil is	
	(1)	$d = \frac{q}{\gamma} \left(\frac{1+s}{1-s} \right)$	$\frac{\ln \phi}{\ln \phi}$		(2)	$d = \frac{q}{\gamma} \left(\frac{1-s}{1+s} \right)$	$\left(\frac{\sin \phi}{\sin \phi}\right)^2$		
	(3)	$d = \frac{q}{\gamma} \left(\frac{1 - s}{1 + s} \right)$	$\left(\frac{\mathbf{in} \ \phi}{\mathbf{in} \ \phi}\right)$		(4)	$d = \frac{q}{\gamma} \left(\frac{1+s}{1-s} \right)$	$\left(\frac{\sin \phi}{\sin \phi}\right)^2$		
82.	_	te lead, red lation of pain		ides of zinc, or	xides of	f iron are th	e substa	ances used in the	
	(1)	Vehicle	(2)	Drier	(3)	Carrier	(4)	Base	
83.		at is the name		_	or slab	of concrete	or stone	usually provided	
	(1)	Jamb	(2)	Reveal	(3)	Cornice	(4)	Threshold	
84.	In to	esting final se	tting tir	ne of cement a	needle	of			
	(1)	1 mm squar	e section	n is used					
	(2)								
	(3)	2 mm squar					,		
	(4)	5 mm squar							
				ROUGH WORK					

85.	Which of the following is not a non-destructive method of testing concrete?								
	(1) Rebound test(2) Radioactive penetration method								
	(4)	Dynamic or vil	bratio	n test					
86.	_	oublic halls and ceased. This per				ersists even	after the	source o	f sound
	(1)	Absorption	BISTE	ice or source	(2)	Echoes			
•	(3)	Reverberation			(4)	Reflection of	f sound		
87.		lime which ha							
	(1)	Quick lime			(2)	Fat lime			
	(3)	Hydraulic lim	е		(4)	Hydrated lin	me .		
88.	Wh	at should be the	aspec	t for a bedro	oom ?				
	(1)	West			(2)	North-West			
	(3)	South-West			(4)	All of the al	oove		
89.	For	roominess, leng	th to	width ratio	should be				
	(1)	1:1 to 1:5			(2)	1.2:1 to 1.5	5:1		
	(3)	1.5:1 to 2:1			(4)	1.5:1 to 1.	75 : 1		
90.		a point in the w aring stress (τ) a 1·5 MPa	_	_					
91.	enti pro	eam of length ire length and duced in the be as at a distance of	rests am is	on two sim	ple suppo	orts. In order	that th	ne maxim	um BM
	(1)	5·86 m	(2)	4·14 m	(3)	2·93 m	(4)	2·07 m	
कच्च्य	ा कामा	 साठी जागा / SPAC	E FOR	ROUGH WO	RK				P.T.O.

- 92. Choose the correct relation between modulus of elasticity (E), modulus of rigidity (G) and bulk modulus (K) from the following options:
 - $(1) \quad \frac{2}{E} = \frac{9}{G} + \frac{3}{K}$

(2) $\frac{9}{E} = \frac{3}{G} + \frac{1}{K}$

 $(3) \quad \frac{3}{E} = \frac{9}{G} + \frac{1}{K}$

- (4) $\frac{1}{E} = \frac{9}{G} + \frac{3}{K}$
- 93. In a simple bending theory, one of the assumptions is that the material of the beam is isotropic. This assumption means that the
 - (1) normal stress remains constant in all directions
 - (2) normal stress varies linearly in the material
 - (3) elastic constants are same in all the directions
 - (4) elastic constants vary linearly in the material
- 94. A simply supported beam of length T carries a point load W at point C as shown in the figure. The maximum deflection lies at

- (1) Point A
- (2) Point B
- (3) Point C
- (4) Between points B and C
- 95. In the torsion equation

$$\frac{\mathbf{T}}{\mathbf{J}} = \frac{\mathbf{\tau}}{\mathbf{R}} = \frac{\mathbf{C} \cdot \mathbf{\theta}}{l}$$

the term $\frac{J}{R}$ is called

(1) Shear modulus

(2) Section modulus

(3) Polar modulus

(4) None of the above

- 96. Two solid shafts 'A' and 'B' are made of the same material. The shaft 'A' is of 50 mm diameter and shaft 'B' is of 100 mm diameter. The strength of shaft 'B' is of that of shaft 'A'.
 - (1) one-half

(2) double

(3) four times

- (4) eight times
- 97. The shear force on a simply supported beam is proportional to
 - (1) displacement of the neutral axis
 - (2) sum of the forces
 - (3) sum of the transverse forces
 - (4) algebraic sum of the transverse forces
- 98. Deflection of the free end of cantilever having point load at the mid span is
 - $(1) \quad \frac{Wl^3}{3EI}$

 $(2) \quad \frac{5Wl^3}{24EI}$

 $(3) \quad \frac{5Wl^3}{48EI}$

- $(4) \quad \frac{Wl^3}{48EI}$
- **99.** An element in a strained body is subjected to only shear stress of intensity 50 MPa tending to rotate the body in clockwise direction. What is the magnitude of principal stresses?
 - $\pm 50 \text{ MPa}$

- $(2) \quad + 50 \text{ MPa}, -25 \text{ MPa}$
- (3) + 25 MPa, 50 MPa
- (4) ± 25 MPa
- 100. Strain energy stored in a solid shaft due to application of Torque 'T' at free end while other end is fixed, if G is shear modulus, J is polar moment of inertia, and L is the length of shaft is/will be
 - $(1) \quad \frac{TL^2}{GJ}$

 $(2) \quad \frac{\mathrm{T}^2\mathrm{L}^2}{2\mathrm{GJ}}$

 $(3) \quad \frac{2TL^2}{GJ}$

 $(4) \quad \frac{T^2L}{2GJ}$

सूचना - (पृष्ठ 1 वरून पुढे.....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

	नमुना प्रश्न
Pick out the	correct word to fill in the blank :
Q. No. 201.	I congratulate you your grand success.
	(1) for (2) at
	(3) on (4) about
	ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव
	खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक ''③'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे
	आवश्यक आहे.
प्र. क्र. 201.	1 2 • 4
	अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरंक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या
	उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता
	फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
	कावत काळवा शाइच वात्तवन वावराव, वान्तता वा शाइच वन वावल नवः

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2018 परीक्षेचा दिनांक : 25 नोव्हेंबर, 2018 विषय : प्रश्नपत्रिका क्र.1 (स्थापत्य अभियांत्रिकी ऐपर - I)

महाराष्ट्र लोकसेवा आयोगातर्फे घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2018 या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
1	2	3	4	4		
2	#	3	4	3		
3	2	1	3	3		
4	2	4	4	3		
5	3	1	2	1		
6	4	3	3	1		
7	1	1	4	3		
8	1	1	2	3		
9	3	4	4	4		
10	3	1	1	2		
11	4	2	3	2		
12	1	1	4	#		
13	4	2	3	2		
14	1	#	3	3		
15	4	3	3	2		
16	2	1	1	4		
17	2	3	1	4		
18	1	3	3	1		
19	4	2	3	3		
20	2	4	4	3		
21	2	4	2	2		
22	1	2	2	4		
23	2	4	#	2		
24	1	4	2	3		
25	1	3	3	4		

प्रश्न	उत्तरे					
क्रमांक	संच A	संच B	संच C	संच D		
26	1	4	2	2		
27	1	2	4	3		
28	3	3	4	4		
29	3	4	1	3		
30	2	2	3	4		
31	3	4	3	4		
32	1	1	2	3		
33	2	3	4	1		
34	3	4	2	4		
35	3	3	3	2		
36	1	3	4	#		
37	4	3	2	2		
38	1	1	3	2		
39	3	1	4	3		
40	1	3	3	4		
41	1	3	4	1		
42	4	4	4	1		
43	1	2	3	3		
44	2	2	1	3		
45	1	#	4	4		
46	2	2	2	1		
47	#	3	#	4		
48	3	2	2	1		
49	1	4	2	4		
50	3	4	3	2		

Date - 28th February, 2019

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपत्रिका क्र.१ (स्थापत्य अभियांत्रिकी पेपर - I)

प्रश्न	उत्तरे						
क्रमांक	संच 🗛	संच B	संच C	संच D			
51	3	1	4	2			
52	2	3	1	1			
53	4	3	1	4			
54	4	2	3	2			
55	2	4	3	2			
56	4	2	4	1			
57	4	3	1	2			
58	3	4	4	1			
59	4	2	1	1			
60	2	3	4	1			
61	3	4	2	1			
62	4	3	2	3			
63	2	4	1	3			
64	4	4	4	2			
65	1	3	2	3			
66	3	1	2	1			
67	4	4	1	2			
68	3	2	2	3			
69	3	#	1	3			
70	3	2	1	1			
71	1	2	1	4			
72	1	3	1	1			
73	3	4	3	3			
74	3	1	3	1			
75	4	1	2	1			

प्रश्न		उत्तरे		
क्रमांक	संच A	संच B	संच C	संच D
76	2	3	3	4
77	2	3	1	1
78	#	4	2	2
79	2	1	3	1
80	3	4	3	2
81	2	1	1	#
82	4	4	4	3
83	4	2	1	1
84	1	2	3	3
85	3	1	1	3
86	3	4	1	2
87	2	2	4	4
88	4	2	1	4
89	2	1	2	2
90	3	2	1	4
91	4	1	2	4
92	2	1	#	3
93	3	1	3	4
94	4	1	1	2
95	3	3	3	3
96	4	3	3	4
97	4	2	2	2
98	3	3	4	4
99	1	1	4	1
100	4	2	2	3

Date -28th February, 2019

ने दर्शविलेले प्रश्न रद्द करण्यात आलेले आहेत.

प्रश्नपुस्तिका क्रमांक BOOKLET No. 2018

प्रश्नपुस्तिका-II

संच क्र.

203005

स्थापत्य अभियांत्रिकी पेपर - 2

एकूण प्रश्न : 100 एकुण गुण : 200

वेळ: 2 (दोन) तास

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- परीक्षा-क्रमांक े भेवटचा अंक
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद कराताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नांकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच "उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82" यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

ार्यवेक्षकांच्या सूचनेविना हे सील उघडू नये

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

1.	stra cons stra	For finding out time 't ₂ ' required to achieve 50% consolidation of 1 m thick clayey strata resting on impermeable rock at bottom and sandy soil at top, a laboratory consolidation test was carried out, using 1 cm thick sample obtained from the same strata. Time "t ₁ " was taken by it to achieve 25% consolidation, under double drainage condition, in the laboratory.											
	Cho	ose the	correct	value of	ratio of	$\left(\frac{\mathbf{t_2}}{\mathbf{t_1}}\right)$	from	the f	followin	g :			
		4,00,00			16,000	(- /	(3)		0,000		None	of the	above
2.	The distance 'D' between centers of piles with top diameter 'd' should not be less												
	than (from practical consideration)												
	(1)	2d		(2)	3 d		(3)	4d		(4)	5 d		
3.	Mat	ch List l	and Li	ist II an	d select	ansv	ver usin	g the co	des giv	en belo	ow:		
		List I			•				List II				
		(Construction Type)							(Suita	ble Cof	ferdar	а Туре	e)
	(a)	Cut-off trench of a dam to be constructed across flowing river						(i)	Cellula	r sheetp	ile cofi	ferdam	
	(b)	Shallo	Shallow foundation of a bridge pier							kment t	ype col	fferdan	n
	(c)	_	ntial rep tion wo		of unde	rwater		(iii)	Single	wall she	etpile	cofferd	am
	(d)	Control of groundwater to prevent entry into deep excavation							Floatin	g steel o	ylinde	r coffer	dam
		(a)	(b)	(c)	(d)								
	(1)	(iv)	(iii)	(ii)	(i)								
	(2)	(ii)	(i)	(iv)	(iii)								
	(3)	(ii)	(iii)	(i)	(iv)								
	(4)	(iii)	(iv)	(ii)	(i)								
4.		void ra			ity of a	soil s	ampl	e ha	ving eq	ual vol	ume of	solids	s and
		Void ra	atio	Poros	ity								
	(-)				-								

	Void ratio	Porosit
(1)	1.0	100%
(2)	0.5	50%
(3)	1.0	50%
(4)	0.5	100%

5. Let E₂ and E₁ represent compaction energy deployed for compacting soil as per modified compaction test and standard compaction test, as per IS.

Choose from the following correct ratio of $\left(\frac{E_2}{E_1}\right)$:

(1) About $4\frac{1}{2}$ times

(2) About $3\frac{1}{2}$ times

(3) About 2 times

(4) None of the above

On the same soil sample, both Standard and Modified Proctor compaction tests are conducted in the laboratory. The values of Optimum Moisture Content (OMC) and Maximum Dry Density (MDD) for modified test compared to those for standard compaction test will respectively

(1) Increase, Increase

(2) Decrease, Increase

(3) Increase, Decrease

(4) No change, Increase

7. If the permeability, shrinkage and swelling of a compacted soil having same density on dry side of optimum moisture content is compared with compaction on wet side of optimum, the variation in these properties will be

(1) more, less, higher

(2) more, more, higher

(3) more, more, less

(4) less, less, higher

8. An embankment has a slope of 30° which was constructed with soil having $C = 30 \text{ kN/m}^2$, $\phi = 20^\circ$ and $\gamma = 15 \text{ kN/m}^3$. The height of embankment is 20 m. Using Taylor's stability no. $\frac{1}{40}$, the factor of safety with respect to cohesion is

 $(1) \quad 0.25$

 $(2) \quad \dot{2}$

(3) 4

(4) 1.5

9. The degree of consolidation depends upon

- (1) thickness of clay layer
- (2) coefficient of permeability
- (3) co-efficient of consolidation
- (4) All the above

10.	The loss of head	l due to sudden	expansion of	f a pipe i	is given	by
-----	------------------	-----------------	--------------	------------	----------	----

(1) $h_L = \frac{V_1^2 - V_2^2}{2g}$

(2) $h_L = \frac{0.5 \text{ V}^2}{2g}$

(3) $\mathbf{h_L} = \frac{(\mathbf{V_1} - \mathbf{V_2})^2}{2\mathbf{g}}$

(4) None of the above

11. Bernoulli's equation is derived making assumption that

- (1) the flow is uniform and incompressible
 - (2) the flow is non-viscous, uniform and steady
 - (3) the flow is steady, non-viscous, incompressible and irrotational
 - (4) None of the above

12. For the laminar flow through a circular pipe

- (1) the maximum velocity = 1.5 times the average velocity
- (2) the maximum velocity = 2.0 times the average velocity
- (3) the maximum velocity = 2.5 times the average velocity
- (4) None of the above

13. Depth at which specific energy is minimum is known as

(1) Critical depth

(2) Conjugate depth

(3) Alternate depth

(4) Normal depth

14. In a rectangular channel section, if the channel depth is 2·0 m, the specific energy at critical depth is

- (1) 3.0 m
- (2) 1.33 m
- (3) 2.5 m
- (4) 1.5 m

15. Which of the following statements is correct?

- (1) Centrifugal pumps convert mechanical energy into hydraulic energy by thrust of piston
- (2) Reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal forces
- (3) Centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force
- (4) Reciprocating pumps convert hydraulic energy into mechanical energy

16. Dynamic viscosity (μ) has the dimensions	s as
---	------

- MLT^{-2} **(1)**
- $ML^{-1} T^{-1}$ (2)
- $ML^{-1} T^{-2}$ (3)
- (4) $M^{-1}L^{-1}T^{-1}$

17. The submerged body will be in stable equilibrium if

- The centre of buoyancy B is below the centre of gravity G
- (2)The centre of buoyancy B coincides with G
- (3)The centre of buoyancy B is above the metacentre M
- (4)The centre of buoyancy B is above G

18. Continuity equation deals with the law of conservation of

(1) mass momentum

(3) energy (4)None of the above

19. The discharge through a single-acting reciprocating pump is

- (1) $Q = \frac{ALN}{60}$ (2) $Q = \frac{2ALN}{60}$ (3) Q = ALN (4) Q = 2ALN

where A = cross-sectional area of cylinder or piston

L = length of stroke

N = r.p.m. of the crank

20. A turbine is called impulse if at the inlet of the turbine

- total energy is only kinetic energy
- (2)total energy is only pressure energy
- total energy is the sum of kinetic energy and pressure energy (3)
- None of the above **(4)**

21. During suction stroke of a reciprocating pump, the separation may take place

- **(1)** at the end of suction stroke
- in the middle of suction stroke **(2)**
- at the beginning of suction stroke
- (4) None of the above

The specific speed (N_s) of a pump is given by the expression 22.

$$(1) \quad N_{\rm s} = \frac{N\sqrt{Q}}{H_{\rm m}^{5/4}}$$

(2)
$$N_s = \frac{N\sqrt{P}}{H_m^{3/4}}$$

(3)
$$N_s = \frac{N\sqrt{Q}}{H_m^{3/4}}$$

$$(4) \quad N_s = \frac{N\sqrt{P}}{H_m^{5/4}}$$

23.	Kap	Kaplan turbine is a/an											
	(1)	impulse turbine	(2)	radial flow impulse	turbine								
	(3)	axial flow reaction turbine	(4)	radial flow reaction	turbine								
24.	A tı	A turbine is a device which converts											
	(1)	Hydraulic energy into mechanical	energy	7									
	(2)	Mechanical energy into hydraulic e	energy										
	(3)	Kinetic energy into mechanical ene	ergy		•								
	(4) Electrical energy into mechanical energy												
25.		In the inlet part of the jet impinging on a Pelton bucket, the velocity of whirl V_{w1} i equal to											
	(1)	absolute velocity of jet at inlet \mathbf{V}_1	(2)	relative velocity of j	et at inlet ${ m V_{r1}}$								
	(3)	zero	(4)	None of the above									
26.		If the turbine has kinetic energy and pressure energy of water at its inlet, then such turbine is known as											
•	(1)	impulse turbine	(2)	reaction turbine									
	(3)	Pelton wheel turbine	(4)	low head turbine									
27.	Whi	Which component is not provided to Pelton wheel turbine?											
_	(1)	Penstock (2) Jet	(3)	Casing (4)	Draft tube								
28.	The artesian aquifer is one where (1) water surface under the ground is at atmospheric pressure (2) water table serves as upper surface of zone of saturation (3) water is under pressure between two impervious strata (4) None of the above												
29.	Lysi	imeter is used to measure											
	(1)	Infiltration	(2)	Evaporation									
	(3)	Evapotranspiration	(4)	Vapour pressure									
30.	Hor	ton's infiltration capacity is given as											
	(1)	$f = f_o + [f_c - f_o] e^{-kt}$	(2)	$f = f_o - [f_c + f_o] e^{-kt}$									
	(3)	$f = f_o - [f_c - f_o] e^{-kt}$		$f = f_c + [f_o - f_c] e^{-kt}$									
कच्च्य	कामार	ाठी जागा / SPACE FOR ROUGH WORK			DTO								

31. Weibull formula is

$$(1) \quad P = \left(\frac{m}{N+1}\right)$$

$$(2) \quad P = \left(\frac{m}{N-1}\right)$$

$$(3) \quad P = \left(\frac{N+1}{m}\right)$$

$$(4) \quad P = \left(\frac{N-1}{m}\right)$$

(where m is order number and N is number of years of record)

32. The term base flow denotes

- (1) delayed groundwater flow reaching a stream
- (2) delayed groundwater and snowmelt reaching a stream
- (3) delayed groundwater and interflow
- (4) the annual minimum flow in a stream

33. Following is **not** the method of apportionment of total cost of multipurpose reservoir:

- (1) Remaining benefit method
- (2) Use of facilities method
- (3) Equal apportionment
- (4) Direct method

34. Owing to the storage effect, the peak of the outflow hydrograph will be smaller than that of the inflow hydrograph. This reduction in peak value is known as

(1) Lag

(2) Attenuation

(3) Routing

(4) Prism storage

35. An IUH is a direct runoff hydrograph

- (1) of one cm magnitude due to rainfall excess of 1-h duration
- (2) that occurs instantaneously due to a rainfall excess of 1-h duration
- (3) of unit rainfall excess precipitating instantaneously over the catchment
- (4) occurring at any instant in long duration

36. The example of aquifuge is

(1) Clay layer

(2) Sandy layer

(3) Solid granite rocks

(4) Silty clay layer

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

37.	The ratio of the quantity of water stored in the root zone of the crops to the quantity of water actually delivered in the field is											
	(1)	Water conve			(2)	Water appli	cation e	fficiency				
		Water use e	•	-	(4)	None of the						
38.	In border strip method of irrigation, the width of strip is											
	(1)	5 – 10 m	(2)	10 – 20 m	(3)	20 – 30 m	(4)	25 – 30 m				
39.	The	duty of irriga	ation wa	ter for a given	crop is	maximum						
	(1)	on the field			(2)	at the head	of main	canal				
	(3)	at the head	of water	course	(4)	near the distributary						
40.	A cl	A channel designed by Lacey's theory has a mean velocity of one m/s. The silt factor										
	is u	nity. The hyd	raulic m	ean radius wi	ll be							
	(1)	2.5 m	(2)	2·0 m	(3)	1·0 m	(4)	0·5 m				
41.	In d	In design of spillway when $H_e = H_d$, the value of 'C' is (1) 1.00 (2) 1.33 (3) 2.00 (4) 2.20										
	(1)	1.00	(2)	1.33	(3)	2.00	(4)	2·20				
42.	Нув	groscopic wate	er is defi	ned as the								
	(1)	· ·										
	(2)	• •										
	(3)	(3) total water content of the soil when all pores are filled with water.										
	(4)	(4) water held by the soil under capillary action.										
43.	In case of non-availability of space due to topography, the most suitable spillway is											
	(1)	Straight dro	op spillw	ay	(2)	Shaft spillway						
	(3)	Chute spills	way		(4)	Ogee spillw	ay					
44.	The channel after obtaining its section and longitudinal slope will be said to be in											
	(1)	Initial regin	ne		(2)	Permanent	regime					
	(3)	Final regim	e		(4)	Absolute re	gime					
45.	The	The silt load in the stream does <i>not</i> depend upon										
	(1)	nature of th	e soil in	the catchmen	t area							
	(2)	topography	of the ca	atchment area	l							
	(3)	intensity of	rainfall									
	(4)	alignment o	f dam									
कच्च्य	ा कामार	प्ताठी जागा / SP#	ACE FOR	ROUGH WOR	<u> </u>			P.T.O.				

46. Match the design speed recommended for various roads by IRC 86: 1983

List I

- Collector roads
- (i) 30 kmph

List II

(b) Local roads

- (ii) 80 kmph
- (c) Arterial roads
- (iii) 60 kmph
- (**d**) Sub-arterial roads
- (iv) 50 kmph

- (a)
- **(b)**
- (c) (d)
- **(1)** (ii)

(a)

- (i)
- (iv) (iii)
- (2)(iii)
- (i)
- (ii)
 - (iv)

(iii)

- (3)(iv)
- (i)
- (ii)
- **(4)** (ii)
- (iv)
- (iii) (i)
- 47. IRC recommended % values of camber for different types of road surface can be arranged in descending order of following roads:
 - Water bound macadam road a.
 - Thin bituminous surface road b.
 - c. Cement-concrete road
 - d. Earth road

Answer Options:

(1) d, b, c, a **(2)** c, a, b, d

(3)d, a, b, c

- c, b, a, d
- The expression for the length of a transition curve (L_s) in meters is 48.
 - (1) $L_s = \frac{V^3}{CR}$

(2) $L_s = \frac{V^3}{16 \text{ CR}}$

(3) $L_s = \frac{V^3}{24 \text{ CR}}$

(4) $L_s = \frac{V^3}{46.5 \text{ CR}}$

where

- C = Rate of change of radial acceleration in m/s³
- R = Radius of the circular curve in metres, and
- V = Speed of vehicle in kmph

50. N	a) b) c)	List I Stop s	following	(2) g:	40 km	nph	(3)	50 kmph	(4)	60 kmph							
() () ()	a) b) c)	List I Stop s		g:													
(1	b) c)	Stop s					Match the following:										
(1	b) c)	-	ions					List II									
(6	c)	Give v	-EII		(i)	(i) Circular in shape											
		Give way signs			(ii)	Equilat	eral tı	riangle with	its apex p	ointing upwards							
		Speed	limit si	gns	(iii)	(iii) Octagonal shape											
``	d)	_	ing signs		(iv) Inverted triangle with its apex pointing downwards												
	 ,	(a)	(b)	(c)			w 01101	igic with its	apex pon	ionig downwards							
(-	1)	(i)	(ii)	(iii													
-	1) 2)	(ii)	(i)	(iii		•											
	2) 3)	(iii)	(iv)	(i)	, (ii												
	4)	(iv)	(iii)	(ii)													
(-	-)	(14)	(111)	(11)	(1)	•											
51. T	he	dowel l	oars are	used in	n rigid	paveme	nts fo										
	1)		ng tensi		_	· • · · · · · ·		-									
	2)		ng bend				•										
	3)			•													
	4)	resisting shear stresses transferring load from one portion to another															
	± <i>)</i>	ti alisi	erring ic	au iro	шопе	portion	o ano	tner									
52. G	Group index method of designing flexible pavement is based on																
а		Oup index method of designing flexible pavement is based on Plasticity index															
b			strengtl														
c.		CBR v	_														
d			nt fines														
A	Answer Options:																
	1)	a, b ar		(2)	b and	c	(3)	a and d	(4)	a, c and d							
53. G	rac	le separ	ration	_													
a.		_	rossing	traffic													
b.			inimize		and ha	azard											
c.			per optic														
d.					and in	convenie	ence										
(1	L)	a and	<u> </u>	(2)	b and	c	(3)	a and b	(4)	c and d							

54. Consider the following statements:

Collision diagram is used to

- a. study accident patterns
- b. eliminate accidents
- c. determine remedial measures
- d. make statistical analysis of accidents

Answer Options:

(1) a and b are correct

(2) a and c are correct

(3) c and d are correct

(4) b and d are correct

55. A bridge has a linear waterway of 150 metres constructed across a stream whose natural linear waterway is 200 metres. If the average flood depth is 3 metres and average flood discharge is 1200 m³/sec, the velocity of approach is

- (1) 2·0 m/sec
- (2) 2.66 m/sec
- (3) 6.0 m/sec
- (4) 8.0 m/sec

56. The width of carriageway required will depend on the intensity and volume of traffic anticipated to use the bridge.

- a. Except on minor village roads all bridges must provide for at least two lane width
- b. The minimum width of carriageway is 4.25 m for one lane bridge
- c. The minimum width of carriageway is 3.75 m for one lane bridge
- d. The minimum width of carriageway is 7.5 m for two lane bridge

Which of the statements given above is/are incorrect?

- (1) Only a
- (2) Only a and c
- (3) Only a, c and d
- (4) Only c

57. Which of the following shall be considered while designing high level bridges for buoyancy effect?

- (1) Full buoyancy for the superstructure
- (2) Full buoyancy for the abutments
- (3) Buoyancy forces due to submerged part of the substructure and foundation
- (4) Partial buoyancy for superstructure

58. The normal depth of scour for alluvial rivers is determined by Lacey's formula

 $(1) \quad \sqrt{0.475} \left(\frac{f}{Q} \right)$

 $(2) \quad 0.475 \left(\frac{\mathbf{Q}}{\mathbf{f}}\right)^3$

 $(3) \quad 0.475^{\frac{3}{4}} \sqrt{\frac{f}{Q}}$

 $(4) \quad 0.475^3 \ \sqrt{\frac{Q}{f}}$

59.	Roller bearings are used in bridges for the span of												
	(1)	18 to 2	24 m	(2)	12 to 18	8 m	(3)	6 to 12 m	(4)	Up to 6 m			
60.	The	maxim	um scou	r depth	dm for	coi	ndition of	flow at nose					
	(1)	1.50 d	l	(2)	1·75 d		(3)	2·00 d	(4)	2·75 d			
61.	For	high le	vel b ri dg	es, the	freeboa	ard :	should <i>no</i>	of be less that	an				
	(1)	200 m	ım	(2)	400 mr	n	(3)	600 mm	(4)	800 mm			
62.	_	per IRC or bridg	_	ations,	the mi	nim	um ceme	nt content ir	concrete	e is for			
	(1)	340 k	g/m ³				(2)	$350~\mathrm{kg/m^3}$					
	(3)	360 k	g/m ³				(4)	370 kg/m^3					
63.		For IRC class A and B loading, the impact factor, for R.C.C. bridges having span more than 45 metres, is taken as											
				•	ken as 0.088		(2)	0.000	. (4)	0.154			
	(1)	0.078		(2)	0.000		(3)	0.098	(4)	0.154			
64.	Wh	ich patt	ern of th	e drilli	ng is n e	 o <i>t</i> u	sed for sh	nafts?					
	(1)		al wedge				(2)	End wedge					
	(3)	Vertic	cal wedge	e cut			. (4)	Alternate	wedge cu	t			
65.	From the economy point of view, tunnelling is advisable when the depth of open cu												
		ore tha	ın	(9)	10		(2)	10	(4)	0.4			
	(1)	6 m		(2)	12 m		(3)	18 m	(4)	24 m			
66.	Match the following:												
		List I	[List II						
	(a)	Firm	ground			(i)	Needing	instant sup	port all r	ound			
	(b)	Runn	ing groui	nd		(ii)	Needing	instant sup	port for r	oof			
	(c)	Self-s	upportin	g groui	nd	(iii)	No need	of instant s	upport for	r roof			
	(d)	11 00			,	(iv)	Soil star short ler		d for sho	rt period and			
		(a)	(b)	(c)	(d)								
	(1)	(i)	(ii)	(iii)	(iv)			•					
	(2)	(iv)	(ii)	(i)	(iii)					· .			
	(3)	(iii)	(i)	(iv)	(ii)								
	(4)	(iv)	(iii)	(ii)	(i)								
कच्च्य			T / SPACE			WO!			_	- DTO			

67.	Which of the following methods is suitable for the construction of large-sized railway or highway tunnels?																
	(1)	Forep	oling met	hod			(2) American method										
	(3)	Case	method				(4)	Full face met	hod								
68.	Match the List I (Shape of Tunnel) with List II (Characteristics):																
		List I	Ι				Lis	t II									
	(a)	Circu	lar section	ı		(i)	Pro	vides more wo	rking	space							
	(b)	Horse	shoe secti	on	٠	(ii)	Pro for	sectional area									
	(c)	Egg sl	hape			(iii)	Vertical sides with flat floor			floor							
	(d)	Segme	s-sectio	n	(iv)	Provides least cross-section area at the bottom			tion area at								
		(a)	(b)	(c)	(d)												
	(1)	(ii)	(i)	(iv)	(iii)												
	(2)	(i)	(ii)	(iii)	(iv)												
	(3)	(iii)	(iv)	(i)	(ii)												
•	(4)	(iv)	(iii)	(ii)	(i)												
69.	In order to maintain the desired shape of the tunnel, the cross section of the tunnel must be checked at a regular interval of																
	(1) 2 m to 3 m (2) 4 m to 6 m (3) 5 m to 7 m (4) 8 m to 15 m																
70.	Assertion (A): Faces for attacking the excavation and construction of tunnels are opened by constructing pilot tunnels.																
	Reas	soning (locations when		ontal approach to ical shafts.							
	(1)	Both (A) and (R)	are tr	ue and (R) is tl	ne co	rrect explanat	ion of	A							
	(2)	(A) is	true and (R) is fa	lse .												
	(3)	(A) is :	false and ((R) is tr	ue												
	(4)	Both (A) and (R)) are fa	lse												

71.	Which of the following methods is generally considered the most efficient system for ventilation of tunnels?										
	(1)	Driving a shaft through the t	tunnel								
	(2)	Driving a drift through the to	op portion								
	(3)	(3) Blow in method									
	(4) Combination of blowing and exhausting										
72.		In case of long tunnels, the drainage system consists of sump wells which are located at regular intervals of about									
	(1)	50 m to 100 m	(2)	100 m to 200 m							
	(3)	200 m to 300 m	(4)	300 m to 500 m							
73.	Air	valves or Air-relief valves are	provided at								
	(1)	Summits	(2)	Valleys							
	(3)	All joints	(4)	None of the above							
74.	Which of the following treatments reduces salinity of water?										
	a.										
	b.	o. Carbon filtration									
	c.	Reverse osmosis									
	d.	Electro dialysis									
	Answer Options:										
	(1)	Only a and b									
	(2)	Only b and c									
	(3)	Only c and d									
	(4)	Only b, c and d									
	The	minimum velocity of flow in a	sewer shoul	d be ideally							
	(1)	equal to self-cleansing velocit	ty								
	(2)	equal to non-scouring velocity	у								
	(3)	less than self-cleansing veloc	ity								

(4) more than non-scouring velocity

76.	Sewer lines having difference of more than 600 mm in the water lines and invert level of two sewers are connected with a										
	(1)	Siphon	(2)	Manhole							
	(3)	Inspection chamber	(4)	Drop manhole							
			(1)								
77.	Gen	erally the period chosen for a standa	rd B.C	O.D. test is							
	(1)	1 day	(2)	5 days							
	(3)	8 days	(4)	20 days							
78.	For	rapid sand filter, sand should have t	he foll	lowing specifications :							
	(1)	Effective size $0.1 - 0.5 \text{ mm}$		·							
		Uniformity co-efficient = 2 to 4									
	(2)	Effective size $0.2 - 0.5 \text{ mm}$		·							
		Uniformity co-efficient = 2 to 3									
	(3)	Effective size $0.45 - 0.7 \text{ mm}$		•							
		Uniformity co-efficient = 1.3 to 1.7									
	(4)	Effective size 0.7 – 0.9 mm									
		Uniformity co-efficient = 1 to 5									
	If waste water is disposed off into a natural stream, the maximum dissolved oxygen										
79.		depletion occurs in the zone of									
	(1)	degradation	(2)	active decomposition							
	(3)	clearer water	(4)	recovery							
80.	In a sedimentation tank design, surface overflow rate (S.O.R.) is calculated as										
	(1)	Surface area/velocity of water Q/V/V	,								
	(2)	Discharge/plan area Q/B×L									
	(3)	Volume of tank/discharge V/Q									
	(4)	Surface area/settling velocity of the	parti	cle A/V _s							
81.	The	waste water treatment unit which is	insta	alled to remove floating substances like							
	grea	ase, oil, fats, waxes, etc. is									
	(1)	skimming tank	(2)	detritus tank							
	(3)	sedimentation tank	(4)	None of the above							
कच्च्य	ा कामा	साठी जागा / SPACE FOR ROUGH WORK									

- 82. An alidade in which one edge is bevelled is called as
 - (1) Soft edge

(2) Fiducial edge

(3) Telescopic edge

(4) Swivel edge

- 83. Contour interval is the
 - (1) vertical distance between two consecutive contours
 - (2) horizontal distance between two consecutive contours
 - (3) vertical distance between two points on the same contour
 - (4) horizontal distance between two points on the same contour
- 84. The length of a simple circular curve of radices R metres and intersection angle D degrees will be
 - $(1) \quad \mathbf{R} \cdot \frac{\mathbf{D}}{2}$

(2) $\frac{\pi}{180}$. R. $\frac{D}{2}$

(3) $\frac{\pi}{180}$. R. $\frac{D}{4}$

- (4) $\frac{\pi}{180}$. R. D
- 85. The height of an instrument is the
 - (1) Height of the instrument above the ground
 - (2) Height between ground and telescope
 - (3) Elevation of the plane of sight
 - (4) Reduced level of station
- 86. If a tachometer is fitted with an anallactic lens, then,
 - (1) Additive constant is 100 and multiplying constant is zero
 - (2) Multiplying constant is 100 and additive constant is zero
 - (3) Both additive and multiplying constants are 100
 - (4) Both multiplying and additive constants are 50
- 87. Following is constant for a contour map:
 - (1) Horizontal equivalent
 - (2) Benchmark
 - (3) Contour interval
 - (4) Topography

88. The combined correction due to curvature and refraction is given by

(1) $0.095 d^2$

(2) $0.01122 d^2$

(3) $0.06735 d^2$

(4) $0.572 d^2$

(where d is in km)

89. Reiteration method is also called as

(1) Method of series

(2) Repetition method

(3) Direction method

(4) Both (1) and (3)

90. The expression for sensitivity of the bubble tube (α) can be taken as, ___

where

n = No. of divisions

s = Net staff reading

d = Distance

R = Radius of curvature

l =Length of one division

- (1) $\alpha = \frac{s}{nd} \times 206265$ seconds
- (2) $\alpha = \frac{d}{ns} \times 206265$ seconds

(3) $\alpha = \frac{nlD}{R}$ radians

(4) $\alpha = \frac{s}{nR} \cdot \frac{l}{D}$

91. Closing error in theodolite traverse survey is given as

- (1) $e = \sqrt{(\sum L^2 + \sum D^2)^2}$
- (2) $e = \sqrt{(\sum L)^2 + (\sum D)^2}$

(3) $e = \sqrt{\sum L + \sum D}$

(4) $e = \sqrt{(\sum L)^2 - (\sum D)^2}$

92. If the length of 16 mm diameter bar is 10 m, then its weight is

(1) 16.5 kg

(2) 16.9 kg

(3) 15.8 kg

(4) 16.2 kg

93. Security deposit is

- (1) deposited at the time of filling tender
- (2) deposited by the contractor whose tender is accepted
- (3) deposited at the time of opening tenders
- (4) deposited for fair competition

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

94.	In order to compute the quantities of R.C.C. beams, lengths of beams are measured to the										
	(1)	nearest millimetre	(2)	nearest half centimetre							
	(3)	nearest centimetre	(4)	nearest inch							
95.	In case of which type of contract, unbalanced tender is not possible?										
	(1)	Open tender	(2)	Item rate contract							
	(3)	Percentage rate contract	(4)	Unit price contract							
96.	Which of the following types of contract is used for execution of large works financed by public bodies or the government?										
	(1)	Item rate contract	(2)	Percentage rate contract							
	(3)	Cost plus type contract	(4)	Target contract							
97.	Assertion (A): Earnest money deposit is usually 1% to 2% of the total estimated cost of the work.										
	Rea	soning(R): Earnest money deposition.	osit pı	revents unnecessary and unhealthy							
	(1)	Both (A) and (R) are true	(2)	Both (A) and (R) are false							
	(3)	(A) is true and (R) is false	(4)	(A) is false and (R) is true							
98.	Equation for cement requirement in tonnes for four-storey R.C.C. framed building (super structure) recommended by C.B.R.I. is										
	(1)	0·153 A + 0·57	(2)	0·145 A + 0·54							
	(3)	0·182 A – 0·35	(4)	2·26 A + 66·8							
	(wh	ere A is plinth area in sq. mt)									
99.	While submitting tender by three envelope method, which envelope contains rates/amount offered by the tenderer?										
	(1)	Envelop : 3	(2)	Envelope nos : 1 and 2							
	(3)	Envelope: 1	(4)	None of the above							
100.	The is	length of L-bend for Tor steel to be	e provid	led at each end of the reinforcing bars							
	(1)	12 times diameter	(2)	6 times diameter							
	(3)	3 times diameter	(4)	150 mm							
 कच्च्या	कामार	गठी जागा / SPACE FOR ROUGH WORK		P.T.O.							

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतःबरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना 🤉	प्रश्न
---------	--------

Fick out tile	correct word to mir in the pre	ank.
	•	
Q. No. 201.	I congratulate you	your grand

(**1**) for

_ your grand success.

(3) on

(1)

(4) about

ह्या प्रश्नाचे योग्य उत्तर "(3) on" असे आहे. त्यामुळे या प्रश्नाचे उत्तर "(3)" होईल. यास्तव खालीलप्रमाणे प्रश्न क्र. 201 समोरील उत्तर-क्रमांक "(3)" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

(2)

प्र. क्र. 201.

2

4

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2018 परीक्षेचा दिनांक : 25 नोव्हेंबर, 2018 विषय : प्रश्नपत्रिका क्र. 2 (स्थापत्य अभियांत्रिकी पेपर - II)

महाराष्ट्र लोकसेवा आयोगातर्फे घेण्यात आलेल्या महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (मुख्य) परीक्षा- 2018 या स्पर्धा परीक्षेच्या प्रश्नपत्रिकेची प्रथम उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका - KEY

प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
1	3	3	2	3
2	2	3	2	3
3	2	2	1	4
4	3	1	1	1
5	1	#	4	3
6	2	3	2	4
7	1	2	2	3
8	3	4	3	3
9	4	1	4	2
10	3	1	3	1
11	3	1	3	3
12	2	3	4	3
13	1	3	1	#
14	#	3	3	1
15	3	1	4	3
16	2	1	3	3
17	4	2	3	3
18	1	4	2	2
19	1	3	1	3
20	1	3	3	3
21	3	4	3	3
22	3	1	#	2
23	3	#	1	1
24	1	4	3	4
25	1	2	3	1

प्रश्न		उत्तरे		
क्रमांक	संच A	संच B	संच C	संच D
26	2	3	3	4
27	4	3	2	4
28	3	2	3	1
29	3	2	3	3
30	4	1	3	1
31	1	1	2	4
32	#	4	1	2
33	4	2	4	3
34	2	2	1	2
35	3	3	4	2
36	3	4	4	1
37	2	3	1	2
38	2	3	3	1
39	1	4	1	#
40	1	1	4	3
41	4	3	2	2
42	2	4	3	3
43	2	3	2	3
44	3	3	2	4
45	4	2	1	1
46	3	1	2	2
47	3	3	1	3
48	4	3	#	2
49	1	#	3	3
50	3	1	2	3

Date - Date: - 28th February, 2019

ने दर्शविलेले प्रश्न रह करण्यात आलेले आहेत.

प्रश्नपत्रिका क्र. २ (स्थापत्य) अभियांत्रिकी पेपर - II)

प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
51	4	3	3	1
52	3	3	3	1
53	3	3	4	3
54	2	2	1	1
55	1	3	2	2
56	3	3	3	3
57	3	3	2	2
58	#	2	3	2
59	1	1	3	3
60	3	4	1	1
61	3	1	1	2
62	3	4	3	1
63	2	4	1	3
64	3	1	2	4
65	3	3	3	3
66	3	1	2	3
67	2	4	2	2
68	1	2	3	1
69	4	3	1	#
70	1	2	2	3
71	4	2	1	2
72	4	1	3	4
73	1	2	4	1
74	3	1	3	1
75	1	#	3	1

प्रश्न		उत्तरे		
क्रमांक	संच 🗛	संच B	संच C	संच D
76	4	3	2	3
77	2	2	1	3
78	3	3	#	3
79	2	3	3	1
80	2	4	2	1
81	1	1	4	2
82	2	2	1	4
83	1	3	1	3
84	#	2	1	3
85	3	3	3	4
86	2	3	3	1
87	3	1	3	#
88	3	1	1	4
89	4	3	1	2
90	1	1	2	3
91	2	2	4	3
92	3	3	3	2
93	2	2	3	2
94	3	2	4	1
95	3	3	1	1
96	1	1	#	4
97	1	2	4	2
98	3	1	2	2
99	1	3	3	3
100	2	4	3	4

Date:- 28th February, 2019

2